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Time-dependent electronic transport is increasingly important to the state-of-the-art

device design and fabrication. The development of nanoscale sensing, the harnessing

and control of structural fluctuations, and the advancement of next-generation materials

all require a treatment of quantum dynamics beyond the level of traditional methods

and a more nuanced approach to the quantum/classical divide. It is thus becoming

necessary to incorporate new theoretical approaches—as well as efficient computational

tools—to fully understand the underlying physical processes in these systems, as well

as the approximations used to solve for their behavior. In addition, recent progress in

ultra-cold atom experiments allows for the direct observation of many-body transport

in the laboratory—a form of quantum simulation—which provides a parallel technique

for solving these problems.

We focus on simulation methods for electronic dynamics, from cold-atom to computa-

tional approaches. To this end, we examine the use of atomic transport in elucidating

the nature of electronic transport and the simulation of the latter in classical com-

puters. In particular, we develop an analog of a scanning tunneling microscope and a

corresponding operational meaning of the local density of states for strongly interacting

particles—a situation where the concept of quasi-particles cannot often be used. This



technique captures the energetic structure of a many-body system through the measure-

ment of particle transport, as well as gives a novel approach to numerically characterize

the system. We also demonstrate how interactions can generate steady-state currents in

fermionic cold-atom systems, as opposed to globally biased systems.

We then shift our attention to the extension of numerical simulations of quantum trans-

port to an open-system formalism—that is, inclusion of an external environment that

drives the system out of equilibrium. We include an explicit treatment of the electronic

reservoirs of a device with a corresponding finite-time relaxation. This yields a compu-

tationally efficient method for simulation of dynamics under non-equilibrium conditions.

Moreover, it gives a general simulation technique for finding periodic steady-states, the

decay of local disturbances, and the real-time response to structural changes.
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1

Chapter 1: Introduction

The quantum mechanical nature of matter—in particular, the transport of electrons—

plays a huge role in today’s modern society. It forms the basis of computing, the delivery

and consumption of energy, and the storage of information. Starting with the transistor,

knowledge of the fundamental nature of matter enabled unimaginable advances in these

fields. We live our lives in the “classical” world where objects behave how we expect

them to: stuff exists in one place and moves according to simple rules, but we are still

reliant on quantum physics—that inherently unpredictable, unintuitive behavior at the

atomic scale—for present-day technologies.

The foundational principles behind quantum mechanics are relatively unchanged from

the 1920’s. In 1923, Louis de Broglie put forth his postulate of matter waves [1] and

by 1930, Schrödinger generalized it with his wave equation [2], Werner Heisenberg for-

mulated his uncertainty principle [3], and Paul Dirac unified the theory with special

relativity [4]. In 1932, John von Neumann formalized it as linear operators in Hilbert

spaces [5].

It is a testament to the rigor and applicability of these fundamental works that they posed

questions that still remain open today. Present-day simulations and representations of

physical systems can be completely described in the context of the original formulation.
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The mathematics within this thesis makes a direct link to these postulates and, as shown

in Chapter 2, can be derived directly from them.1

While the core principles remain the same, our knowledge about quantum mechanics

is far from complete. Even some of the most basic problems elude an exact analytical

solution, and treating a small number of particles numerically quickly becomes extraor-

dinarily difficult. The n-body problem of classical physics is also present, and greatly

increases the challenge of finding solutions to open questions here.

Before getting into the mathematical details, though, this chapter provides a brief

overview of some of the general history and ideas behind the research in the rest of

this thesis.

1.1 Simulation and Computational Physics

From a practical standpoint, most problems in physics are intractable using analytic

methods from first principles. The problem and the fundamental equations may be

simple to write down, but finding a solution may be extremely difficult. Fortunately,

since we typically care about connections to physical reality, an approximate or numerical

approach is often just as good as an exact one—in the same way that an engineer does

not need an analytic expression for the forces exerted on a bridge.

However, numerical solutions also allow us to tease out the underlying properties of a

complex system. We can perform experiments “in silico”—that is, classically—by vary-

ing parameters and assumptions of our model and performing “measurements” on the

results. The standard processes of experimental design, data analysis, and hypothesis

testing apply in much the same ways as a physical experiment. A simpler version of the

behavior can be posited, which can, in turn, be tested. In addition, this line of inquiry

1That is not to say that quantum physics has not moved forward in the meantime. Quantum field
theory [6], quantum chromodynamics [7, 8], and electroweak unification [9] are important components
of theoretical quantum physics, and unification of the quantum world with gravity remains an open
problem.
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is bounded only by the amount of computational power available, which means a po-

tentially large number of samples and searches over multi-dimensional parameter space.

As computers get larger and faster, more complexity can be introduced and studied.

Naturally, a major concern is that these conclusions match those in the laboratory, but

beyond that strict requirement, researchers have the freedom to build and test various

techniques to solve difficult problems.2

This thesis is focused on physical simulation, which attempts to create a realistic model

of a given system and then allowing it to evolve over time. In practice, the line between

a numerical solution and a simulation is quite arbitrary, as computational methods of

dealing with dynamics are very similar to other processes. The two terms can usually

be interchangeable.

1.2 Fundamental Approach

The study of complex phenomena admits two, sometimes complementary, approaches

to scientific discovery: “bottom up” versus “top down,” each with their respective ad-

vantages and disadvantages. In the “top down” approach, one attempts to find funda-

mental rules through the observation of a collective process or from a holistic point of

view. The other, “bottom up,” starts with a set of assumptions and works to explore the

consequences or emergent behavior. The results presented in this thesis would arguably

qualify as “bottom up.” The model is typically defined as a first step in each problem,

which is usually described in a simple manner, after which the dynamics are explored

and conclusions about its general functionality are found.

It is useful to be aware of the amount of approximation even within a numerical calcula-

tion. The error associated with a computation can arise from the model (such as using a

2The need for approximate, numerical calculations has largely been responsible for the rise of comput-
ing technology. Analog computation dates as far back as ancient Greece, where the Antikythera Mech-
anism was used to predict celestial positions [10]. The earliest programs ran on the ENIAC machine—
the first general purpose computer—and were used to determine the feasibility of the thermonuclear
weapon [11].
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simpler system to represent a more complicated one), the solution to the model (such as

intentionally using an approximate solution to an exactly-defined model to reduce the

computational complexity), or from a general limitation of the process (such as rounding

error). In a well-performed calculation, all potential sources of error are accounted for

and reported.

Numerical exactness is the property of a computational method to faithfully reproduce

the exact solution to within arbitrary precision. One such algorithm is tDMRG (time-

dependent density matrix renormalization group—discussed in more detail in Sec. 2.4):

the amount of approximation error present in the result is a function of the simulation

parameters, so they can be tuned until convergence is reached. Even though an analytic

output does not exist, it can be proven that the results will match the non-approximate

solution within the correct limits.

Even though we focus mainly on computational solutions, that does not mean that we

disregard analytic work. It is, in fact, the opposite. Analytics are critical for testing

results on smaller, more tractable problems. If a numerical result displays a certain

property (for instance, it appears to be linear within a particular regime), then that can

guide the approximations taken to find a simpler, exact solution (like performing series

expansions in the correct variables and limits). In addition, it is often useful to create

forms that describe a complex behavior in a simplified manner, leading to interesting

relationships that emerge from complicated interactions.

1.3 General Quantum Mechanics

In general, the challenges associated with real quantum-mechanical systems are difficult

because of the tiny spatial extent and extremely fast speeds involved. Most readily

observable phenomena occur at a classical timescale, which means that very precise

measurements are needed to discriminate quantum effects. Observing processes at this
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Numerics

Electronics
Atomtronics

(Cold-atom Physics)

Figure 1.1: The interrelationship between levels of simulation and physical real-
ity. Computational work allows for the simulation of quantum mechanics within
a classical computer. These same models can be simulated physically within the
laboratory using cold-atom experiments. Each box in this figure provides mo-

tivation for the other two.

scale remains a challenge, but nevertheless is regularly demonstrated—such as the recent

observation of light as both a particle and a wave [12].

Even though individual quantum events—such as an electron moving from one place to

another or a single spin flip—are hard to discriminate, the fundamental nature of the

process plays an important role in the bulk properties of the material. Quantum effects

are readily measurable without specialized equipment and we rely on their effects for a

significant amount of our modern technology.

The contents of this thesis are mainly concerned with problems of the first kind: fine-

grained electronic processes that can be extraordinarily difficult to measure in practice,

particularly due to their time-dependent nature. Luckily, we are not restricted only

measuring these effects in electronic systems. As shown in Fig. 1.1, two other fields allow

researchers to approach the problem in a complementary manner: classical simulation

and quantum simulation in engineered cold-atom experiments.

1.3.1 Classical Simulation

As is discussed in further detail in Chapter 2, the computational effort needed to simulate

a quantum system grows rapidly with the system size. Anything more complicated
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than a few tens of atoms quickly becomes unfeasible to calculate exactly, even on the

largest supercomputers. However, there are several methods to treat these systems

approximately, often to a very high degree of accuracy.

Even though a quantum system may have an intractable number of degrees of freedom,

in many realistic scenarios only a small part of this space needs to be actually explored.

States generally stay close to thermal equilibrium, particle number remains exactly or

nearly constant, and time evolution proceeds mostly in a continuous manner. More

importantly, long range correlations and entanglement do not typically spontaneously

develop.3 There remains a concept of approximate “locality,” which means that even

though a particle could become entangled with any other particle, in practice they only

tend to develop correlations to those near one another. This is one of the reasons why

creating a quantum computer is so difficult: long-range correlations need to be created

and maintained, while the natural tendency of the system is to decohere into a more

local state.

Therefore, the general way forward in simulating these systems is to restrict the total

space needed to accurately replicate the higher-dimensional state space. In the sim-

plest case where the particles are non-interacting, one can immediately reduce from an

exponential-sized space to a polynomial one with no loss of accuracy. If particle number

is conserved, as in a closed system, then one only needs to work with configurations

that contain the right number and can safely ignore the rest. Density functional theory

(DFT) is a computational method that uses the local particle density to investigate the

electronic structure of many-body systems [14]. tDMRG theory restricts the space to

components that contribute the most to the overall state [15, 16].

Along with the process of making better approximations, the available computing power

for these problems continues to grow. Although Moore’s law is coming to an end [17],

the rise of cheaper and more energy efficient hardware means that the ability to simulate

complex systems will continue to increase. Moreover, the types of algorithms used are

3The key word here is “typically” as there are, of course, many counterexamples of very interesting
materials that do otherwise [13].
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well suited to parallelism, meaning that a difficult calculation can be distributed over

a large number of processors. As the processor industry makes the transition from

increasing clock speed to increasing cores, this type of numerical work can readily take

advantage of the change, whereas traditional applications are struggling to transition to a

parallel machine [18]. In addition, the invention of GPU-based processing [19] or many

integrated core architectures [20] means that an increasing amount of computational

power will continue to be available in the near future.

1.3.2 Quantum Simulation with Cold Atoms

Recent advances in the study of cold-atom systems have led to a parallel method of study-

ing quantum physics in the laboratory. Instead of working with electrons or phonons

as the fundamental particles, whole atoms can be cooled to very low temperatures, at

which point their quantum nature becomes the most important—whereas at high tem-

peratures, they quickly undergo decoherence due to interactions with their environment.

When multiple electrons, protons, and neutrons are formed into an atom or molecule,

the addition of angular momenta determines the net spin. This depends on the com-

posite particles: for instance, hydrogen has spin 1
2 while helium has spin 0. Like their

fundamental particle counterparts, atoms with a half-integer spin are fermions and obey

the Pauli exclusion principle and ones with integer spins are bosons. A natural conse-

quence of this is that ultra-cooled bosonic atoms are able to occupy the same quantum

state simultaneously in what is known as a Bose-Einstein condensate [21–23].

The cooling process is usually performed through a combination of laser and evaporative

cooling methods. The required temperature is in the microkelvin range and so requires

a precise control over the kinetic energy of the atoms. Laser cooling involves tuning an

incident beam to a frequency that is slightly lower than an interatomic transition within

the atom. Since the frequency is mismatched, it only weakly interacts with the atom.

However, if the atom is moving in the direction of the laser, then it is Doppler shifted

and the atom is able to absorb an incoming photon. This state is typically unstable
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and a photon with similar energy is re-emitted, but in a random direction. Due to

conservation of momentum, the atom will eventually be slowed through a series of these

interactions [24, 25].

To achieve even colder temperatures, an evaporative cooling process is applied, which

is functionally similar to air-cooling systems of the same name. The total temperature

of the atoms is lowered by allowing the atoms with the highest kinetic energy to escape

the system. This is usually done by reducing the depth of the trap that the atoms are

held in, making it unable to contain the fastest atoms. These atoms compose the long

tail of the energy distribution and remove the bulk of the energy when they exit the

system [26].

Once sufficiently cool, then it is possible to probe the quantum nature of the atoms

through a series of careful experiments. Various potentials can be applied to the atoms

through the use of electric and magnetic fields and the system can be allowed to reach a

ground state or to undergo some dynamical process. More importantly, since the bosons

and fermions used are atoms, then they can be directly observed using light. The usual

states of the atom still exist, so their reflection or transmittance acts as normal and the

position of the particles can be seen through a microscope. Although the measurement

is still destructive, the experiment can be repeated identically and measured at different

times to record the time evolution. Moreover, the atoms are much more massive than

electrons, so the timescales involved are much slower than in electronic systems.

Finally, even though the atoms are typically electronically neutral, they can still exhibit

particle-particle interactions by manipulating the energy states of the electrons within

the atom. A common method of performing this is by using a Feshbach resonance [23],

which creates a bound state between atoms relative to the kinetic energy of a collision.

An external field is applied which amplifies the hyperfine structure of the atoms. The

strength of this field determines the magnitude of the many-body interaction and allows

experimenters to tune the interaction magnitude from non-existent to strong.
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Figure 1.2: Simulation of electronic phenomena with cold atoms. Two clouds
of ultra-cold 6Li fermionic atoms with a particle density mismatch are allowed
to come into contact with one another and a total current measured through
total particle count. (Top Left) Ohmic conduction between two clouds in the
ballistic transport regime. (Bottom Left) Non-linear transport of a strongly cor-
related superfluid. (Right) A quantum point contact via use of a laser confining
potential and a micron-scale channel. The gate potential was created through
the use of an additional laser beam providing an attractive potential. The solid
lines are the theoretical predictions based on the Landauer formula, with the
inset showing the plateau as a function of reduced energy. These results were

reported in Refs. [27, 31, 32].

Special care must be taken to trap these atoms into a particular region and to apply

the desired potential. Again, because of the atoms’ neutrality, the electronic structure

must be used to achieve the wanted effect. Mageneto-optical traps operate on a similar

principle to the laser cooling: a spatially varying field is applied to the trap region

with causes a shift in the magnetic-sensitive levels of the electronic structure. This shift

increases with distance away from the center of the trap, so atoms moving away from the

center are likely to absorb an incident photon and be pushed back towards the center.
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With this method, experimenters are able to create arbitrary potentials on which to

study ground state generation or time evolution phenomena [25].

Much work in the state-of-the-art of quantum simulation of fermionic systems has been

done by Esslinger’s group at ETH [27–33]. Using a 6Li-based cloud, the group has

demonstrated ballistic-to-diffusive transitions, quantized conductance, and strongly cor-

related transport, among others (see Fig. 1.2). Although current progress in interacting

systems is limited to the mean-field regime, experimentalists are rapidly approaching

the ability to provide insights into open questions of condensed matter physics.

An alternative method involves using the magnetic moment of the whole atom. If a

cooled atom is placed into strong magnetic field, then the magnetic moment will align

in the same direction in order to minimize the energy. However, since the magnetic

moment itself is quantized, this alignment cannot match an arbitrary magnetic field.

The result is that when a weaker, spatially varying field is added to the strong one,

it creates places where all the magnetic moments are aligned but the atoms still exist

within an energy potential. With this technique, it is possible to pattern a chip with a

magnetic material and use that to construct geometries of trapping potentials [34–36].

1.4 Time Evolution of Quantum Systems

A rapidly emerging field of study in quantum simulation—and the subject of this thesis—

is the study of dynamical properties of systems, i.e., ones that are out of equilibrium. The

study of static quantum systems has been very successful in describing a large amount

of physical phenomena, and the work towards a deeper understanding of explicit time

dependence is more challenging in comparison.

The difficulty lies in working with states that are far away from the ground state of a

system. A key property of the ground state is that the total energy of the system is the

lowest possible, given the physical constraints.4 This means that analytic and numerical

4Such as particle number, boundary conditions, etc.
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solutions admit a number of variational and iterative techniques to find the solution. In

short, one can always “spend more time” adjusting a solution to locate a more accurate

candidate for a ground state, and a calculation of the total energy will show if a new

solution is better than a previous one.

In the time-dependent case, this is no longer true, and we must instead find methods

that give solutions for how the system behaves for each slice of the time domain. On

the numerical side, the equivalent comparison is between performing a minimization

routine and solving a set of coupled differential equations. Often times, the process

comes down to controlling error associated with a discretization parameter (such as

the timestep interval) and running increasingly more fine grained calculations until the

results converge. Calculations in this domain must also deal with propagation of error

throughout the simulation, which means that any error earlier in the simulation can

greatly influence the final results. As a result, most simulations are limited to a finite-

length—usually short—simulation time before the results become unreliable.

One could argue that dynamical properties of quantum systems are responsible for nearly

all useful physical processes—such as light emission, electricity, and chemical reactions—

but ground- or steady-state approaches have been largely successful in providing the

theoretical underpinnings to these systems. For instance, one can use the band structure

of a material to derive its conduction properties, even if the exact process of electron

motion is not known. In contrast, there are many more open questions that require a

more detailed approach. In the field of quantum chemistry, many reactions and processes

require an in-depth description of particle motion to understand them [37]. In the world

of nanoscale electronics, sophisticated techniques allow for small-scale fabrication of

components, which are much more sensitive to electronic motion [38]. Molecular devices

not only have complicated energy structures, but can isomerize, or change shape, in real

time in response to electronic motion [39].

Of particular interest is when the quantum mechanical nature of electrons interacts with

observable motion in the on a larger scale. These two processes have vastly different



12

timescales associated with them, with the quantum system reacting much faster than the

constituent atoms and molecules. As such, these systems are usually treated with the

Born-Oppenheimer approach [40] or variations thereof, which assume that the electronic

relaxation and nuclear motion are separable. However, this is not always the case and

different orders of processes can interact with one another in complex ways [41]. The

difficulty here not only lies in the simulation across separated timescales, but deciding

how much of the system should be treated quantum-mechanically versus the inclusion

of some classical components.

Lastly, the study of open quantum systems [42]—which allow systems to exchange par-

ticles with a larger environment—has cleared up some of the questions behind electronic

transport. However, the state space is similar to that of static calculations. Often,

iterative techniques are applied to find the “steady-state” solution, which is the long-

time, stationary response. This process again eliminates the detail of the dynamical

motion on top of the non-equilibrium solution, and oftentimes these methods introduce

much complexity. A system which constantly fluctuates in time could have interest-

ing classical/quantum interactions which are not entirely captured by the steady-state

approach.

1.5 Applications

This section briefly summarizes a few select applications of time-dependent transport

theory.

1.5.1 Quantum Chemistry

Catalytic processes play a huge role in material applications and much remains to be

learned about the underlying physics. In particular, and of interest to the material in this

thesis, electrocatalytic processes and current-induced chemical reactions have a strong

dependence on the underlying electronic motion. Individual electron transfer or current
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Figure 1.3: Design of catalytic materials. (Top and Bottom Left) The reaction
rate was found experimentally and computationally with kinetic models based
on DFT calculations. Here, CO oxidation activity and ammonia synthesis pro-
ductivity were analyzed, as published in Ref. [43]. (Right) Desorption of CO
initially, after exposure to THz radiation, and after CO is redosed to form a CO
layer, from Ref. [44]. This implies that a strong electric field—which influences
the electronic motion—plays a relevant role in the catalytic process and new

theoretical models are necessary to accurately model it.

flow can have strong effects on the chemical structure. A more thorough understanding

leads to greater predictive power of catalytic processes and a stronger computational

support for the development of new processes. Only recently has the design of novel or

improved catalysts been attempted entirely in silico [45], and there remain many open

problems in this field.

Figure 1.3 shows some examples of computational chemistry as applied to catalytic sys-

tems. DFT-based models have been largely successful in the computational design of

certain materials. However, current research suggests that a more sophisticated model

of the electronic properties is needed in certain cases, such as in some strongly correlated
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Figure 1.4: Computational design of electronic materials. (Left) Computed
efficiency of a solar cell device using open quantum systems and electron-phonon
processes, from Ref. [46]. (Right) Full 3D non-equilibrium Green’s function

calculation of a doped semiconducting nanowire, from Ref. [47].

oxides, the inclusion of van der Waals interactions, and complications from electrocat-

alytic and photocatalytic processes [43].

1.5.2 Device Design

A more thorough understanding of dynamical properties can also inspire device design.

Electronic devices such as solar cells, those fabricated on the nanoscale, or assembled out

of individual molecules all benefit from a more complete picture of real-time processes.

Quantum mechanical effects become a primary factor in the efficacy of these devices.

Figure 1.4 shows some examples of devices and device design involving first principles

transport.

1.5.3 Sensing Applications

Time-dependent processes are increasingly more important in the emerging field of elec-

tronic molecular sensing. Here, a current is passed through a nanoscale device that is

immersed in a solution which contains the desired sensing target, often an ionic concen-

tration, a molecule, etc. When it is in close proximity to the device, the field effect alters

the electronic properties of the material and hence induces a change in the measurable
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Figure 1.5: Dynamical sensing applications for electronic devices. (Left) A
computational study of DNA base discrimination in an electrode nanopore under
thermal fluctuations, as reported in Ref. [48]. (Right) Time-dependent current

of a liquid-gated carbon nanotube transistor, from Ref. [49].

current. The steady-state methods can work well for these systems; however, the in-

teraction between the two happens in a stochastic manner—the ions or molecules are

usually rapidly fluctuating within the medium under the effect of thermal, or Brownian,

motion, which needs to be taken into account in the device design.

If the fluctuations are rapid enough or strongly coupled to the electronic system, then

their dynamical motion can have a large effect on the device response. A time-dependent

model is required to encapsulate the hierarchy of timescales: very fast electronic dy-

namics, electronic scattering and relaxation times, fast-to-intermediate structural fluc-

tuations of the device and the surrounding media, and long measurement timescales.

The key goal in this field is to be able to create an accurate prediction of the aggregate

time average that will incorporate this information in a realistic and computationally

efficient manner.

In order to simulate devices used at a finite temperature, information about the struc-

tural information in addition to electronic properties is required. Usually, the large

scale atomic motion is typically treated classically, while the electronic properties are

calculated afterwards. This classical simulation is done through the use of molecular

dynamics, which simplifies the interatomic interactions to particles with electrostatic
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and van der Waals forces between them. This in turn allows for a simulation of time

evolution to be completed using much more reasonable computing power at the expense

of a complete quantum-mechanical picture.

More sophisticated sensing devices have been proposed for biomolecular applications,

such as DNA and protein sequencing. Figure 1.5 shows some examples where the dy-

namics of the molecules become important for the transport properties and sensing

applications. Device design through real-time approaches remains relatively unexplored.

1.6 Outline

The remainder of this thesis is organized as follows:

Chapter 2 contains the mathematical details required for the remainder of this thesis.

This chapter provides a derivations of the particular concepts we examine starting from

the fundamentals of quantum physics.

Chapter 3 contains work performed in collaboration with Chih-Chun Chien and Mas-

similiano Di Ventra. We develop an analog of a scanning tunneling microscope and a

corresponding operational meaning of the local density of states for strongly interact-

ing particles. We apply this approach to an inhomogenous many-body system, in the

context of cold-atom simulation.

Chapter 4 contains work also performed in collaboration with Chih-Chun Chien and

Massimiliano Di Ventra, and originally published in Ref. [50]. It analyzes the presence

of an interaction-induced conducting—to—non-conducting transition in a 1D fermionic

system.

Chapter 5, authored in collaboration with Kirill A Velizhanin, derives a connection

between an open quantum system in the non-equilibrium Green’s function approach with

that of a Markovian master equation with explicit extended reservoirs. This formalism
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provides a suitable method for determination of the long time dynamics in interacting

systems. This work was published in Ref. [51].

Chapter 6 continues the previous one and focuses on the details of the mathematical

derivations of the particular system, with additional information about regimes where

the master equation breaks down.

Chapter 7 examines the effect of electronic transport on a quantity known as the quan-

tum discord and it’s relationship to the ballistic to diffusive transition in an open quan-

tum system.

Appendix A covers some derivations, methods, and examples used in computational

quantum simulation and Appendix B discusses some of the software tools and languages

used for development of this thesis.
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Chapter 2: Mathematical Background

Much of the contents of this thesis involves methods of solving Schrödinger’s equation

numerically with a controllable error. The process is as follows: consider the Hamiltonian

H of a simplified model of a physical system. This Hamiltonian represents how all the

components of the system interact: how favorable it is for particles to move, how particle-

particle interactions occur, how correlations develop, etc. The Hamiltonian encodes all

the information about energy in this model “universe.” Along with it, a Hilbert space is

defined, which is the vector space in which a single quantum state exists along with a set

of observables. Then, working from the postulates of quantum mechanics, information

about the ground state or the time evolution of the state can be calculated. This process

dates from the foundation of quantum mechanics, but, as will be shown, methods and

techniques of numerical solutions are necessary to make complex systems tractable.

2.1 The Fundamentals

Schrödinger’s equation is the basis for describing quantum mechanical behavior, so it is

only natural that the first numbered equation in this thesis should reproduce it:

H |ψ(t)〉 = ı~
∂

∂t
|ψ(t)〉 . (2.1)
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Here, the time-dependent equation in bra-ket notation was chosen. The Hamiltonian

H describes the quantum system and all information about the state is contained in

the vector |ψ(t)〉. In this form it can apply to any physical system, e.g., a particle in a

potential, a set of spins, or states of a molecule.1 The quantity ~ is the Planck constant

and it describes the relationship between energy and time. At time of writing, it is equal

to 6.582 119 514(40)× 10−16 eV s [52].

The above formalism is useful for a pure quantum state, but often it is necessary to work

with mixed quantum states—that is, a statistical ensemble of pure states. If a system is

in quantum state |ψi〉 with probability Pi, then we can define the density matrix, ρ, as

ρ(t) =
∑

i

Pi |ψi(t)〉 〈ψi(t)| . (2.2)

We can then use Eq. (2.1) to write down the canonical time evolution of the density

matrix as

ρ̇ = − ı
~

[H, ρ]. (2.3)

Here, the brackets, [. . . ], mean commutator: [A,B] = AB −BA.

The procedure to find the dynamics of these quantum systems is as follows: define the

initial conditions of the density matrix ρ(t = 0), define the Hamiltonian of the system

H, and then solve the system of differential equations as defined above.2 This solution

contains all the information about the quantum state since the time evolution began,

from which one can obtain correlations, particle densities, etc. In quantum mechanics,

each observable is represented by a Hermitian operator that acts on the state of the

system. The outcome of a measurement an observable A can only be one of the eigen-

values of A, but typically this is described using expectation values of operators.3 Using

bra-ket notation, this expectation value is calculated by | 〈ψ(t)|A |ψ(t)〉 |2 ≡ 〈A(t)〉. In

1Equation (2.1) even describes the time evolution of the entire universe.
2It should be noted that time evolution can also be calculated by finding an operator U and applying

it to the state, but in practice such methods are difficult to work with, as they require a diagonalization
of the Hamiltonian.

3In many real-world systems, a large number of quantum states are prepared identically, so the main
outcome of an experiment is typically the average or its fluctuations.
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the density matrix formalism, the measurement value is just the probability of each state

times its expectation value, which is 〈A(t)〉 = tr(ρ(t)A).

We are free to represent the time-dependent state of the system using whatever formalism

is most convenient. These two representations are known as the Schrödinger picture

and the Heisenberg picture respectively (with an intermediate approach termed the

interaction picture). Using the definition for the expectation value and moving the time

dependence onto the operators, Eq. (2.3) can be written equivalently as

Ȧ(t) =
ı

~
[H, A(t)], (2.4)

and therefore we can work with the operators themselves rather than the quantum state

in the wavefunction/density matrix. Typically, only a few observables are needed in the

context of a given problem, so the computational workload can be drastically reduced

simply by changing pictures, as is discussed below.

Up until this point we have not mentioned any particular representation of the Hamil-

tonian, states, and operators. In technical terms, they are described by a C*-algebra:

a complex algebra of continuous linear operators on a complex Hilbert space [53]. In

practice—especially in the areas of research where this thesis is concerned—the Hilbert

space is discretized and, therefore, operators are represented by complex valued matri-

ces and bras and kets are complex valued vectors. This representation preserves the

non-commutativity required by quantum mechanics.

2.2 Many-body Quantum Mechanics

For this work, the focus is on quantum systems with multiple particles. These can be

electrons in a metal, photons in free space, or cold atoms in a confining potential well.

The formalism of quantum mechanics allows us to treat the myriad of particles and

physical processes through a construct known as creation and annihilation operators.

These are operators that can be applied to a quantum state to add or remove particles
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with given properties. For example, let us consider a quantum system with a single

state. In particular, we focus on fermionic systems. The eigenstates of the system are

|0〉, which is when the system is empty, and |1〉, which contains a particle. The state

of the system can be any superposition of these two states: |ψ〉 = a |0〉 + b |1〉. We can

then define the pair of operators c and its Hermitian conjugate c† as the operators that

remove and add a particle to the system respectively. It has the following properties:

c† |0〉 → |1〉 (2.5a)

c |1〉 → |0〉 (2.5b)

c† |1〉 → 0 (2.5c)

c |0〉 → 0. (2.5d)

It is important to note that at this point there is no distinction between what type of

particles, or even general states, are used in this system, other than that it can only

exist in two forms. Nevertheless, this construct allows us to define how we can retrieve

information from the configuration. For instance, we can define a number operator

n ≡ c†c whose expectation value,
〈
c†c
〉
, is the occupation of the system. In this case,

it can be a real value between zero and one.

A rapid increase of complexity and computational requirements manifests itself when

expanding the system to include more than a single particle. If we examine a system

with two sites, where each site can hold a single particle, then the eigenstates for the

system are all the possible products of the single site eigenstates: |00〉, |01〉, |10〉, and

|11〉. The notation |00〉 is shorthand for |0〉 ⊗ |0〉, with each number corresponding to a

single site that can contain a particle. There are now four of them, so the state of the

system requires four complex coefficients to describe it.

Since there are two particle sites in this new system, the creation and annihilation

operators need to be expanded to cover all possible eigenbasis. The usual way to do this

is to add an index to the operator which relates it to a specific site, so now the basis
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for the whole system can be described by a set of ci and c†i operators. Each one acts

individually, for example, in the two site system, c†1 |00〉 → |10〉, and so on.

Once multiple particles are introduced, it is necessary to distinguish what kind of par-

ticles and particle states exist within the system. If we are describing a photon or

phonon system, then we must use bosons, whereas if we are working with an electronic

system, then fermions must be used. Bosons can share quantum states, whereas the

Pauli exclusion principle applies to fermions and only one can occupy a single state.

Most importantly, fermions have a property known as exchange antisymmetry, whereby

exchanging the order in which these operators are applied will invert the sign. Mathe-

matically, this is a condition on how the operators commute:

{ci , c
†
j} = δij (2.6a)

{ci , cj} = {c†i , c
†
j} = 0. (2.6b)

Here, the curly brackets, {. . . }, are the anticommutator {A,B} = AB +BA. Similarly

for bosons, the operators follow the same relationship but with applying the commutator,

e.g., [ci , c
†
j ] = δij .

At this point, we can continue to expand the system to include a total of N sites, with

each site able to hold a single particle. Even though we are describing single sites, this

formalism can be expanded to include other quantum numbers by including them under

the same index. For example, a system with both spin up and spin down fermions can be

modeled with 2N spinless sites. Each state on each site can be indexed by the quantity

τi ∈ {0, 1}, so the entire wavefunction can be written as

|ψ〉 =
∑

τ1,τ2,...,τN

cτ1,τ2,...,τN |τ1, τ2, . . . , τN 〉 =
∑

τ

cτ |τ 〉 . (2.7)

Here, the vector τ goes over every possible combination of states on individual sites,

and cτ are all the coefficients needed to describe a complete state. Now we see where

the exponential growth in complexity comes from: every additional site that is added
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doubles the number of coefficients needed to describe the state of the composite system.

To give an idea of how much information a quantum system like this needs, a system

with N = 32 sites would require 32 GB of storage to hold one wavefunction. If that

were increased to N = 64, then 8 EB (exabytes) are required. This 2N growth in storage

requirements quickly becomes unwieldy.

The above values only apply to pure quantum states, and the space required is even

larger when working with a mixed state. A density matrix describing an N site system

is a 2N by 2N complex-valued matrix. Similar limitations apply to the application of an

operator to a state, which requires a matrix-vector multiplication or 22N complex scalar

multiplications. Both the space complexity (the amount of memory required to store

information about the system) and the time complexity (the amount of time required

to perform a calculation) go up exponentially with the size of the system. In addition,

these sites typically represent single atomic or molecular states, so even simulating a

nanoscale device would require a huge number of them.

However, these limitations only apply if one wants to keep track of the quantum states

in their entirety. As will be shown, there are many ways to reduce the computational

complexity by limiting the amount of information, restricting to a well-behaved subprob-

lem, or by making approximations within the simulation techniques. Indeed, most of

the field of quantum many-body systems is concerned with transforming these problems

into ones that are more tractable.

2.2.1 Full Time Evolution

Calculating the time evolution of a quantum system without approximations is a matter

of solving the differential equations given by Schrödinger’s equation, Eq. (2.1). However,

we still have not defined the form of the Hamiltonian H, the associated c†i operators,

and the state |ψ〉 in a way that is suitable for numerical computation.
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Since the creation and annihilation operators form a basis set for our system, then the

Hamiltonian can be a sum or product of these operators. In the most general form,4

H =
∑

ij

hijc
†
icj +

∑

ijkl

h′ijklc
†
icjc

†
kcl +

∑

ijklmn

h′′ijklmnc
†
icjc

†
kcl c

†
mcn . . . (2.8)

Here, the components of each order are written separately in order to distinguish them

easily. However, higher order components can specify lower ones as well. For example, it

can be seen from the commutation relations that the term specified by h′1112 is the same

as h12. To specify this most general form for the Hamiltonian completely, a 2N by 2N

complex matrix is required. Section A.1 details the conversion between the operators

and matrix forms via the Jordan-Wigner transform when dealing with fermions.

2.2.2 Realtime Approach

As a first step to reducing the computational complexity, we will first limit ourselves

from the Hamiltonian in Eq. (2.8) to a quadratic Hamiltonian of the form

H =
∑

ij

hijc
†
icj . (2.9)

Pauli exclusion is guaranteed by the anticommutation relations but otherwise particles

do not interact and the total particle number is conserved. This simplification might

seem extreme at first, but nevertheless many interesting physical phenomena can be

studied and explained with this type of model. This also provides a natural starting

point to start building in higher order effects.5

Most, if not all, of the physical observables of interest in this type of system are derived

from expectation values of pairs and c†i and ci operators. To simplify the notation, we

4As a matter of simplicity, we have already taken into account that unpaired creation and annihilation
operators do not have an effect on the expectation value of observables, and so have removed them from
the expression

5And is also the reason why the general Hamiltonian was originally written in the form of Eq. (2.8)
as well.
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will define the correlation matrix as

cij(t) ≡ tr[ρ(t)c†icj ] =
〈
c†icj

〉
(t). (2.10)

As before, the terms of interest are directly related to values in this matrix. For example,

the diagonal terms cii are the onsite occupations of their respective site i. This is

useful on its own, but for the Hamiltonian in Eq. (2.9), this matrix uniquely describes

the entire state of the system. To see this, we can calculate the time evolution of

ċij(t) = d
dt

〈
c†icj

〉
(t). Multiplying Eq. (2.3) on the right by c†icj and substituting H

yields

ċij(t) =
ı

~
[h, c(t)]ij , (2.11)

with the N by N matrix h (with elements hij) describing the complete Hamiltonian. No

other higher-order terms arise in this expression and, therefore, the equations of motion,

from Eq. 2.11, form a closed set of differential equations. The correlation matrix can be

calculated directly as a function of time without any other information about the state

required.

This is important for computational complexity because, for an N site system, both h

and c are N by N complex-valued matrices. We now have a polynomial growth (N2)

in the space and time complexity rather than an exponential growth. Where eight sites

would be difficult to calculate before, we now have the ability to scale up to thousands or

hundreds of thousands of sites, which can reach the scale of nanoscale electronic devices.

Of course, this is at the expense of the complete many-body picture.

Since we have reduced the Hamiltonian to the form of Eq. (2.9), it is possible to do a

direct diagonalization of the system in a simple manner. The time evolution typically

starts from a ground state of the system with the interaction turned off or from a system

with different components initially disconnected. The diagonalization involves finding

the unitary transformation bk =
∑

i Ukici so that H =
∑

k εkb
†
kbk. U is unitary because

UU † = I and εk represents the spectrum of energies of H. With this representation, the

ground state correlation matrix can be found by
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1. Find the eigenenergies and eigenvectors of h. Since it is a 2D matrix, this process

is relatively straightforward for even a large number of sites. Ideally, we want the

result in the form that most numerical packages provide: an array of N eigenvalues

(εk) and a 2D matrix of normalized eigenvectors in the same order arranged into

the rows or columns (Uij).

2. Populate a correlation matrix in the energy basis. For the ground state (all states

with energy less than zero are occupied) populate a matrix m so that mij =

δijΘ(−εi). That is, the diagonal elements have a value of 1 for each corresponding

energy below a cutoff energy.

3. Find the site basis correlation matrix by applying c = U †mU (or c = UmU †

depending on which direction the particular solver finds the eigenvectors).

A similar process can be done to find the state at finite temperature: mij = δijfD(εk, β, µ),

with fD as the Fermi-Dirac distribution [56, 57]:

fD(ε, β, µ) =
1

eβ(ε−µ) + 1
, (2.12)

where β is the inverse temperature 1/kBT , and µ is the chemical potential of the reser-

voir. The constant kB is the Boltzmann constant, which relates the energy of a given

particle to its temperature: 8.617 3303(50)× 10−5 eV K-1 [52].

The diagonalization yields the energy distribution as a function of the site index, so the

density of states is found by expanding to the continuum and performing the derivative

dk/dεk. Alternatively it can be kept in discrete form, which means the density of states

is proportional to a sum over delta functions,
∑

k δ(ε− εk). The local density of states

(LDOS) is a space-resolved extension of the density of states that weights each state

with the wavefunction overlap of a particular site. Each εk is associated with the kth

column vector, Ψk, in the eigensolution, so the overlap with site j is |〈j|Ψk〉|2, making
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the LDOS in the discrete form

D(ε) =
∑

k

|〈j|Ψk〉|2 δ(ε− εk). (2.13)

This only works in this manner if the wavefunctions can be expressed in terms of a linear

combination of single site eigenstates.

The diagonalization of the open system Lindblad equation, discussed later in Sec. 2.3.1, is

found using the same process. An interacting Hamiltonian can be treated the same way,

but the computational complexity of the eigenvalue problem quickly makes it unfeasible

for anything but small systems.

As an example, the electronic current through the system can be found without any

intermediate calculations. For a closed system, this involves dividing the system into

two parts and examining the change in onsite occupation in one half:

I(t) = eṄleft = e
∑

i∈left

ċii(t), (2.14)

where e is the electronic charge 1.602 070 040(81) × 10−19 C [52] and Nleft is the total

number of particles in the left section. Using the expression for the time evolution, this

can then be written as

I(t) =
e

~
∑

i∈left

∑

j

2 Im[hijcji(t)], (2.15)

as h and c are both Hermitian matrices.

2.2.3 Mean Field Approximation

Next, a term is included in the Hamiltonian that allows the particles to interact directly

with one another. The preferred method for this to separate the fermions into spin up

(↑) and spin down (↓) varieties. This is accomplished by adding an additional index to

the c†i operators: now the basis set is c†i↑, ci↑, c
†
i↓, ci↓. For the Hamiltonian, we will add a
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term that adds an additional energy, Ui, if the two types are on the same site. This is

written as

H =
∑

ijσ

hijσc
†
iσcjσ +

∑

i

Uic
†
i↑ci↑c

†
i↓ci↓. (2.16)

Note that there is no interaction between the two species in the first term (the sums over

σ ∈ {↑, ↓} are independent) so this Hamiltonian does not have a “spin flip” mechanism

and the number of particles of each type is conserved.

If we calculate the time evolution of the correlation matrix using the same method as

the previous section, then the equation of motion becomes

ċijσ(t) =
ı

~

(〈
[c†iσ,H]cjσ

〉
+
〈
c†iσ[cjσ,H]

〉)

=
ı

~

{
[h, c(t)]ijσ − Ui

〈
c†i↑ci↑c

†
i↓cj↓

〉
(t) + Uj

〈
c†i↑cj↑c

†
j↓cj↓

〉
(t)
}
. (2.17)

Since the interaction term was added, the time evolution for the correlation matrix

no longer forms a closed system of equations. The differential equations now include

two-particle correlation terms, which are expectation values of four operators. If we

calculated the time evolution of these two-particle correlations, what we would find is

that the result depends on three-particle correlations, which, in turn, depend on four-

particle correlations, etc. This infinite hierarchy of coupled equations is known as the

BBGKY hierarchy (after Bogoliubov [59], Born and Green [60], Kirkwood [61], and

Yvon [62]). The inclusion of interacting terms requires more information about higher

order correlations and this process continues until the computational complexity is scales

the same as the of original density matrix formulation.

Most of the relevant information about the system (particle density, current flow, etc.)

is calculated from the single-particle correlations, so the computational complexity can

be limited by truncating the equations of motion to only include correlations of order

d or less. Expectation values that include more than d operators are approximated by

lower order terms. This limits the total computational complexity in time and space to

order Nd, so that it remains polynomial rather than exponential.
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Use of the Wick decomposition (see Sec. A.2) and assuming the single-particle Hamil-

tonian is symmetric in spin allows us to rewrite Eq. (2.17) in approximate form:

ċij(t) =
ı

~

{
[h, c(t)]ij − Ui

〈
c†ici

〉
(t)
〈
c†icj

〉
(t) + Uj

〈
c†icj

〉
(t)
〈
c†jcj

〉
(t)
}

=
ı

~
{[h, c(t)]ij − Uicii(t)cij(t) + Ujcij(t)cjj(t)} . (2.18)

At this point, we have recovered the N2 space and time complexity of the single-particle

Hamiltonian. It still forms a set of N2 coupled differential equations, but this time they

are non-linear. For numerical simulation purposes, the non-linear aspect usually matters

very little, as the computational cost remains the same as the previous, linear version.

As we will see in Chapter 4, this process can be continued to keep orders higher than

mean field. There, the total complexity is kept at N4 by preserving all two-particle cor-

relations and decomposing the three-particle terms that arose. Our truncation metric

is the order of the correlations, which provides a convenient limit to the computational

complexity, but is not necessarily the most efficient or accurate approximation, as dis-

cussed in Sec. 2.4.

2.3 Electronic Transport

So far the discussion has centered around closed quantum systems: the number of sites

has remained finite and the total number of particles in the system are conserved. The

system is initially placed into a particular configuration and the time evolution is allowed

to proceed while the wavefunction or observables are monitored. However, in this thesis,

but we are interested in electronic (and atomic) transport for which this approach has

some drawbacks.

The first, and arguably the most important, is that we are usually interested in the

steady-state dynamical properties of, e.g., electrons, which are properties on a longer

timescale than the response time for a single particle. For instance, if we were to connect
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a resistor to a battery, then there is some finite time where the electron flow has started

but not yet reached through the whole circuit. However, this happens quickly and what

is physically measured is a near-instantaneous transition to constant current flow.

Simulating this current in the long time regime is near impossible using the closed system

approach. Any “switching on” of the time evolution results in a decaying transient

motion. The simulation of the system must run long enough so that the results reflect

the steady-state rather than the transient current. However, a finite system can only

time evolve for a finite time before it starts recurrence. As an illustration, if we have

N sites representing a particle reservoir and allow each particle to move to an adjacent

site in one time unit, then the simulation can only continue for N time units before the

reservoir empties and the particles begin to flow back in. This temporary formation of

the constant motion solution is known as a quasi-steady state (QSS).

As a result, the size of the system will need to be large, with an associated increase in

computational complexity. Additionally, if the Hamiltonian has a slowly varying time-

dependent component, then it can be impossible to find the true steady-state, even when

examining a non-interacting Hamiltonian. Real devices do not have this problem, as the

number of states in, e.g., a battery is extraordinarily large and the recurrence time is

correspondingly long.

The solution to this is to revisit our formulation of the time evolution, Eq. (2.3), to

represent an open quantum system—that is, a model that allows particles to flow into

and out of the system.

2.3.1 Lindblad Equation

The dynamics of an open quantum system are modeled as a smaller system that inter-

acts with a larger, external environment. When combined, these two components time

evolution in the usual unitary fashion. If U is the time evolution operator for the state
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of the system and the external environment, then we write the effect on the system as

ρ̇ = E(ρ) = trenv

[
U(ρ⊗ ρenv)U†

]
, (2.19)

where trenv is the partial trace over the environment. The object E is a superoperator

on the density matrix ρ, which is a linear operator that acts on the vector space of linear

operators—it takes an operator as input and returns an operator. The commutator of ρ

with H in the canonical time evolution, Eq. (2.3), is another example of a superoperator

on ρ.

We can choose an orthonormal basis |ek〉 for the state space of the environment and

label the initial state by ρenv = |e0〉 〈e0|. Substituting this into Eq. (2.19) yields

E(ρ) =
∑

k

〈ek|
[
U(ρ⊗ |e0〉 〈e0|)U†

]
|ek〉 =

∑

k

EkρE
†
k, (2.20)

with Ek ≡ 〈ek| U |e0〉. This expression provides a general open system operator (as a

unitary operator does for a closed system); however, we would like a more tractable form

that matches reality in specific cases. Ideally, it would provide the following:

1. Trace preserving. The density matrix is coupled to the expectation values, so it is

convenient to incorporate normalization into the time evolution.

2. Completely positive. This is a requirement of superoperators on ρ in general, so

that probabilities are not less than zero and entanglement entropy is well defined.

3. Incorporates closed-system dynamics. We already know how a system defined

by H evolves in time, so presumably the open system dynamics should occur in

addition to those.

4. Continuous time evolution. As with the closed system, the time evolution process

is expressed in the form of a differential equation in t.
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The solution to these requirements is given by what is known as the Markovian master

equation

ρ̇(t) = − ı
~

[H, ρ(t)] +
∑

k

(
Lkρ(t)L†k −

1

2

{
L†kLk, ρ(t)

})
. (2.21)

The Hamiltonian in this expression still applies to the system,6 and the Lk operators

are what are known as Lindblad terms, which represent the effect of the environment.

In a sense, these are arbitrary, but they can be derived from an explicit representation

of the environment through the use of Born and Markov approximations.

We now have access to the long-time dynamics of the system without needing to take

into account the recurrence issue from closed systems. For example, if we wish to find

the state after a long time and all the transient evolution has passed, ρ(∞), then we can

simply set ρ̇ = 0 and invert the superoperator on the right side of the expression. If it is

too expensive to work with the superoperator directly, then the time evolution can be

iterated until it converges to the steady state.

Of particular interest is the master equation in the form

ρ̇ = − ı
~

[H, ρ]+
∑

k

γk+

(
c†kρck −

1

2

{
ckc
†
k, ρ
})

+
∑

k

γk−

(
ckρc

†
k −

1

2

{
c†kck, ρ

})
, (2.22)

where the Lindblad operators are the creation and annihilation operators on the system

site basis. The term multiplied by γk+ represents the injection of particles at site k with

rate γk+, and similarly the γk− component represents the removal of particles. This, in

effect, allows us to include the particle sources and sinks as something outside of the

system. In electronic transport, this equation allows us to specify an “input,” such as a

battery, and focus on the simulation of the device response in H.

Moreover, if the system Hamiltonian H is non-interacting, then we can follow a simi-

lar process as in Sec. 2.2.2 and examine the time evolution of the correlation matrix.

6In the most general sense, this Hamiltonian is not necessarily the same as the one with the system
decoupled from the environment. However, for the work presented in this thesis this is always the case.
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Multiplying Eq. (2.22) on the right by c†icj and taking the trace yields

ċij(t) =
ı

~
[h, c(t)]ij +

cij(t)

2
(γi+ + γi− + γj+ + γj−) + γi+δij . (2.23)

Like before, setting ċij = 0 and inverting the right side superoperator (which is now size

N4 rather than 24N as in the density matrix case) yields the long time solution for the

steady state.7

2.3.2 Landauer Approach

We have taken some steps in reducing the complexity by using an equation of the form

of Eq. (2.22), which eliminates the degrees of freedom of the environment. This section

explores a further set of approximations known as the Landauer approach [54].

This approach is fundamentally a viewpoint and comprise a set of physical assumptions

on top of the open quantum system formalism, which guide the construction of the

model of electron transport. The primary assumptions are the following [55]:

1. There exists an ideal steady state which is said to be stationary and unique. Pre-

viously, this was implicitly taken be true, but here it is explicit.

2. Edges of the device are treated as boundary conditions rather than a coupling to

an environment.

3. A mean-field approximation is required. With the master equation, the Hamilto-

nian and/or Lindblad operators can be many-body operators.

4. A device consists of single-particle channels that are treated independently. The

idea is that an incoming particle occupies an energy state in the device, which does

not mix with others as it transitions through.

7Note that the steady state is not guaranteed to be unique or even to exist for all initial conditions
on ρ. However, again, this is true for the work presented in this thesis.
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Whether or not these assumptions reflect reality depends strongly on the properties of

the device but, as we show in Chapter 3, it is possible to make an explicit connection

between this approach and the master equation.

This picture of transport reinforces the idea of quantized conductance. If a device

consists of many independent channels with some probability that current will flow

through each one, then there must be an amount of current that each channel can sustain

(provided the particle does not scatter).8 It is defined as G0 = e2/(π~), where, again, e

is the charge of one electron, making the conductance quantum 7.748 091 7310(18)×105

S [52].

In its simplest form, Landauer’s formula for the conductance is just the quantum of

conductance summed over all the open channels:

G(µ) = G0

∑

k

Mk(µ). (2.24)

This expression is for conductance at a particular energy µ. This is expanded into a

continuous form to be

I =
e

2π~

∫ ∞

−∞
[fL(ε)− fR(ε)]× T (ε)dε, (2.25)

where several components are included: instead of conductance, we are now calculating

total current, fL and fR are the electronic distributions of the surrounding environment

and T is a continuous transmission coefficient.

The typical configuration is shown in Fig. 2.1. The system is divided into a “left”

portion where electrons at a higher potential enter the device, a central region with a

transmission probability (the section that was modeled with the Hamiltonian in the open

system case), and a “right” portion at a lower potential where the electrons exit. These

open portions are referred to as the leads of the device. The distribution function, f , can

8The quantum of conductance can also be found through a direct application of the Heisenberg
uncertainty principle: ∆E∆t ≈ ~, making the appropriate conversions between charge/current to ener-
gy/time.
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L T (ε) R

Figure 2.1: Diagram of electron transport in a device. In a typical calculation,
the system is divided into electronic reservoirs, L and R in the figure, which
are the sources and sinks of electronic currents. The remaining component is
the system of interest, with a transmission coefficient T (ε) in this case, and is

usually treated exactly with a specified Hamiltonian.

be any arbitrary function, but a common practice is to use a Fermi-Dirac distribution,

Eq. (2.12). The distributions in Eq. (2.25) are then fL(R)(ε) = fD(ε, β, µL(R)) with

µL > µR.

2.3.3 Non-Equilibrium Green’s Functions

The expression in Eq. (2.25) is useful for calculating the transport properties of a known

or simple transmission function in the ballistic case. However, we would like to be able

to relate it to our explicit definition of the Hamiltonian. That is, model the central

system explicitly and as exact as possible. To do this, we need the non-equilibrium

Green’s function (NEGF) approach.

NEGF expands on the Landauer approach (Sec. 2.3.2) by allowing for the inclusion of

scattering processes and strong correlations. Apart from the addition of many-body

interactions, this formalism makes almost the same set of assumptions as were used in

the last chapter. Much work has been put forth in the study of NEGF (see Ref. [58] for

a broad reference). However, we will only cover the subset needed for the material in

this thesis.
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Mathematically, a Green’s function of a linear operator L is any solution of9

L(G(t, t′)) = −δ(t− t′). (2.26)

The goal of the non-equilibrium problem is to solve for the time dynamics of a system

evolving under the Hamiltonian of the form

H = h+H ′(t) = H0 +Hi +H ′(t). (2.27)

H0 is the single-particle time-independent part of the Hamiltonian that can be solved

exactly, Hi is the time-independent part that contains the many-body aspects of the

problem, and H ′(t) is the time-dependent perturbation that is applied to the system at

time t0.

The derivation of NEGF is similar to that used in the equilibrium Green’s function, so

first we will provide a review of the Green’s function formalism for an interacting system

at equilibrium. Like the correlation matrices, these Green’s functions yield important

quantities (self-energy, spectral functions, etc.) that we will need for the non-equilibrium

case. A number of physical situations are solvable using the equilibrium formalism as a

starting point before moving into NEGF.

We expand into the continuous case by working with the field operator ψ(r) =
∑

k 〈r|φk〉 ck,
which destroys a particle at position r. The time evolution in the Heisenberg picture

with respect to the time-independent part of Eq. (2.27) is then

ψ(r, t) = eiht/~ψ(r)e−iht/~. (2.28)

The single-particle time-ordered Green’s function is defined as

G(r, t, r′, t′) = − i
~

〈
T [ψ(r, t)ψ†(r′, t′)]

〉
, (2.29)

9The minus sign is a just a convention choice and can be omitted for the same result.
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where T [. . . ] is the operation that time-orders the field operators. This expression can

be generalized to finite-temperature equilibrium situations by using the thermal density

matrix in the expectation value.

As it is strongly related to the correlation matrix from above, all measurable quan-

tities are directly related to this Green’s function and it encodes the entire state of

the system. For example, the particle density is related to the Green’s function by

〈n(x)〉 = −i~G(r, t, r, t+) (with t+ = limε→0(t + ε)). Similar expressions can be found

for expectation values of kinetic energy, total energy, etc.

For future reference, we will define four different types of Green’s functions:

Gr(r, t, r′, t′) = −iθ(t− t′)
〈
{ψ(r, t), ψ†(r′, t′)}

〉
, (2.30a)

Ga(r, t, r′, t′) = iθ(t′ − t)
〈
{ψ(r, t), ψ†(r′, t′)}

〉
, (2.30b)

G<(r, t, r′, t′) = i
〈
ψ†(r′, t′)ψ(r, t)

〉
, (2.30c)

G>(r, t, r′, t′) = −i
〈
ψ(r, t), ψ†(r′, t′)

〉
. (2.30d)

These Green’s functions are known as retarded, advanced, lesser than, and greater than

Green’s functions, respectively. They are not linearly independent and they obey the

relationship Gr −Ga = G> −G<.

We can find the equation of motion for the Green’s function by differentiating both sides

of Eq. (2.29) and using the commutation relations of the field operators:

(
i~

d

dt1
+

~2

2m
∇2

1

)
G(r1, t1, r

′
1, t
′
1) = δ(r1 − r′1)δ(t1 − t′1)

− i
∫
dr w(r1 − r)G2(r, t1, r1, t1; r, t+1 , r

′
1, t
′
1). (2.31)

G2 is the two-particle Green’s function. In order to close the system of equations, we

would need to solve the equation of motion forG2, which would have a dependence onG3,

the three-particle Green’s function, which depends on the four-particle and so on until

infinite order. This problem arises from the interaction term(s) in the Hamiltonian and
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t0 C1 t

C2

t0 − i~β

Figure 2.2: Time contour in complex plane. This contour is used to evaluate
expectation values at time t from some initial condition specified at t0, with
an additional propagation in the complex time direction to account for finite

temperatures.

is the same hierarchy problem as discussed earlier in Sec. 2.2.3: if it was only comprised

of single particle terms then the higher order Green’s functions could be written in terms

of products of two-particle functions.

To manage the infinite number of Green’s functions, the typical approach is to put the

interaction effects of all particles into a quantity known as the irreducible self-energy,

represented by Σ. With some Fourier transforms, we end up with a much more tractable

expression for the Green’s function:

G(k, ω) = G0(k, ω) +G0(k, ω)Σ(k, ω)G(k, ω), (2.32)

where G0 is the free particle Green’s function. With this equation, we can write the

Green’s function as

G(k, ω) =
1

ω − εk − Σ(k, ω)
. (2.33)

Notice that the self-energy term has the effect of moving the pole to a different energy

away from εk and the problem has changed from finding the full Green’s function to

finding an expression for the self energy. In practice, this term is found by selecting

the most relevant terms from a perturbation expansion for G, usually aided by drawing

Feynman diagrams. These components we have now are all that is needed for the non-

equilibrium formalism. More details on the mathematical derivation can be found in

Refs. [55, 58, 63].
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Continuing on to the non-equilibrium case, the system will often not return to initial

state for asymptotically large times, so we must remove any references to ±∞. Before, it

was a matter of moving t0 to −∞ and removing some of the complexity of our derivation,

but now it must be taken into account. This general formulation of the theory is slightly

more complicated than the equilibrium case, but it still bears a close resemblance to its

predecessor.

The largest difference in the non-equilibrium case is that the Green’s functions are now

defined on a time contour rather just along the real time axis. That is, we are expanding

time to the complex plane, where the many-body perturbation can be applied. That also

means we must define a contour ordering operator TC [. . . ] that orders the field operators

on the contour. For shorthand notation, we will use (1) ≡ (r1, τ1), with τ1 being a point

in the complex time plane. We can then write our contour-ordered Green’s function as

(with close similarity to Eq. (2.29))

G(1, 1′) ≡ −i
〈
TC [ψ(1)ψ†(1′)]

〉
. (2.34)

(In these sections, we set ~ = 1 to simplify notation.) Figure 2.2 shows the contour used

in the non-equilibrium case. It starts at initial time t0 (which takes into account the

initial correlations of our system) and runs along the real axis to t and back. It is then

continued in the imaginary time direction for finite temperatures.

Notice that since we have two time variables in our expression for G, and the contour in

Fig. 2.2 has two branches labeled as C1 (going to the right) and C2 (going to the left),

there are four possibilities for the form G takes:

G(1, 1′) =





GC(1, 1′) t1, t1′ ∈ C1

G>(1, 1′) t1 ∈ C2, t1′ ∈ C1

G<(1, 1′) t1 ∈ C1, t1′ ∈ C2

GC̄(1, 1′) t1, t1′ ∈ C2

. (2.35)
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GC is the causal or time-ordered Green’s function as defined in Eq. (2.29), G< and G>

are the lesser and greater Green’s functions from Eq. (2.30c) and Eq. (2.30d), and GC̄

is the anti-time-ordered Green’s function (the time ordering operation has the times

reversed). Once again, there are only three linearly independent functions, as we have

the relationship GC + GC̄ = G< + G>. We can recover expressions for the other two

Green’s functions via a linear combination of the lesser and greater functions:

Gr(1, 1′) = θ(t1 − t1′)[G>(1, 1′)−G<(1, 1′)] (2.36a)

Ga(1, 1′) = θ(t1′ − t1)[G<(1, 1′)−G>(1, 1′)] (2.36b)

We still need to transform our solution in order to properly perform a many-body per-

turbation, meaning that we need to separate out the terms which relate to h into the H0

terms (single-particle) and Hi terms (many-body) as defined in Eq. (2.27). The details

of this transformation are lengthy and can be found in Ref. [64], so we will just state

the final result:

G(1, 1′) = −i
〈
TC [SiCS

′
C′ψ(1)ψ†(1′)]

〉
0〈

TC [SiCS
′
C′ ]
〉

0

. (2.37)

The expectation value is taken with respect to the ground state of the non-interacting

part of the Hamiltonian H0. The S values are contour integrals over the other parts of

the Hamiltonian and are defined as

S′C′ = exp

[
−i
∫

C′
dτ H ′H0

(τ)

]

SiC = exp

[
−i
∫

C
dτ H i

H0
(τ)

]
(2.38)

C is the whole contour as shown in Fig. 2.2, while C ′ is just the part of the contour that

goes from t0 to t and closes back at t0.

Equation (2.38) is exact for any specified Hamiltonian and all time dependence is gov-

erned by the solvable part of the Hamiltonian H0. This means the density matrix is

quadratic (and is simply given as proportional to exp(−βH0)) so Wick’s theorem applies

and we can construct Feynman diagrams in the non-equilibrium case as well. As in the
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equilibrium case, the denominator cancels the disconnected diagrams and we can reason

about which terms of the perturbation expansion are the most important. The equilib-

rium and non-equilibrium theories are thus structurally equivalent with a replacement

of the real axis integrals with contour integrals.

Since the contour-ordered Green’s function has the same perturbation expansion as the

equilibrium formalism, we can make the same construction as in the previous section

and assume that a self-energy functional can be defined such that it encapsulates the

many-body effects of the system. From that, we create a similar Dyson equation to the

equilibrium case:

G(1, 1′) = G0(1, 1′) +

∫
d3x2

∫

C
dτ2 G0(1, 2)U(2)G(2, 1′)

+

∫
d3x2

∫
d3x3

∫

C
dτ2

∫

C
dτ3 G0(1, 2)Σ(2, 3)G(3, 1′). (2.39)

We have implicitly made the assumption that the non-equilibrium term in the Hamilto-

nian can be represented by a one-body external potential U . An example relating this

NEGF approach to Landauer is in Sec. A.6.2.

This Dyson expression is the general relationship between the orders of the Green’s func-

tions and is consequentially used to find the equations of motion for the four other types.

This is the point where the application of this method becomes difficult: the solution

requires the evaluation of a two-time integral to include the many-body interaction. The

numerical integral carries with it a high computational cost, with time complexity scal-

ing as the number of timesteps squared. However, the Markovian approach, discussed

in Sec. 2.3.1, comprises a single time integral and scales linearly with the number of

timesteps. In Chapters 5 and 6, we make the explicit connection between these two

formalisms.
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2.4 tDMRG/MPS

Section 2.2 provides a way to build numerically (and sometimes analytically) tractable

expressions for the time evolution of a system. However, it assumes that the states

of the system are close to a thermal distribution of the many-body system and there

is no guarantee that this is the case. Depending on how the interactions are applied,

the system can be in a much different state and the error introduced in the Wick ap-

proximation can be large. Additionally, there is no method for finding the magnitude

of the error introduced without performing a higher order calculation, which might be

infeasible given a large enough N .

An alternative method to calculating the time evolution is known as time-dependent

matrix renormalization group (tDMRG). tDMRG provides a “numerically exact” solu-

tion to the quantum many-body problem for certain classes of systems, meaning that the

error has a known magnitude and is controllable. This method allows for a calculation

to an arbitrary accuracy while still providing a polynomial growth in the computational

complexity. This technique is equivalent to the matrix product states (MPS) based

time-evolving block decimation.10

In order to understand how these schemes work, following Ref. [66], we need to rework

the representation of the general wavefunction from Eq. (2.7): |ψ〉 =
∑

τ cτ |τ 〉. The cτ

set of coefficients has N indices, one for each site in the system. The MPS formalism

represents this object as an N index tensor. Pictorally, |ψ〉 looks like

|ψ〉 ≡

τ1 τN

. (2.40)

The tensor is represented by the box and each one of the “legs” is an index, so an N

dimensional tensor has N legs. This tensor network method provides a convenient way to

10It is a quirk of history that there are two formalisms that describe the same thing. DMRG was
originally invented in 1992 and shown to work without a rigorous mechanistic insight. It wasn’t until
2004 that MPS was discovered that the insight as to why it did not fail, as other renormalization schemes
did, was systematically explored [65].
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describe tensors as well as operations between them. For example, a vector-vector inner

product is . Each vector has one index (represented by the line coming out of

each box) and connecting them together is a contraction over that index (performing the

product). There are no free legs in the result so it is a scalar. Similarly, a matrix-vector

product is , with the free index meaning that the result is a vector.

Under this formalism, the cτ tensor is the fundamental object: it contains the informa-

tion about the state of the entire system and the time evolution of system observables

are calculated from it. Any general operator that acts on the system can be expressed

as

O =
∑

ττ ′

cττ ′ |τ 〉
〈
τ ′∣∣ ≡

τ1 τN

τ ′1 τ ′N

. (2.41)

For the operator, there are twice as many free indices, and it is convenient to separate

them into “input” and “output” sides in this picture representation. Applying the

operator to the state can then be represented by

O |ψ〉 ≡

τ1 τN

τ1 τN

⇒ |ψ′〉 (2.42)

When the operator is applied to the state, all the internal indices that match are con-

tracted and the resulting object is a new N index tensor. The complex conjugate or

bra state is represented by changing the side that the indices are coming out of. For

instance, the normalization condition on a wavefunction is shown as

〈ψ|ψ〉 ≡ = 1. (2.43)
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At this point the formalism is largely the same as how it was originally introduced in

previous sections. We have shifted around the representation of the states and operators

slightly, but it is still fundamentally the same concept. The advantage here comes from

the fact that we can easily see that we can change the representation of the state to

|ψ〉 ≡

τ1 τN

. (2.44)

So now instead of a single N index tensor, we have factored the wavefunction into the

product of N tensors with three indices each. Every interior connection is a matrix

multiplication, making the wavefunction

|ψ〉 =
∑

τ1,τ2,...,τN

M τ1M τ2 . . .M τN |τ1, τ2, . . . , τN 〉 , (2.45)

where each M is a two dimensional matrix. If we were to factor an arbitrary state into

this form, then we would not gain anything in terms of space complexity. However, if

the state were close to what is known as a product state, then the maximum dimension,

χ, of each matrix M can be limited to something much smaller than that needed for an

arbitrary state. For example, the vacuum state is an eigenstate of the system and so

to represent that in this form, each M only needs to be size one by one. There are N

total matrices with an index that can go between d values, so the total space complexity

is Nd to hold the state, whereas the original tensor needs dN terms to represent the

same thing. Especially when working with states that are near product states (as time

evolution processes tend to provide), this representation efficiently captures the state.

By decomposing the state into matrices that are indexed on individual sites, we are

imposing a notion of locality onto the wavefunction representation. The states that

are most efficiently represented in matrix product form are those that are lacking a

excess of entanglement. We can still use this representation to examine systems where

correlations develop (and indeed it would not be very useful if that were not the case)

but the underlying assumption is that they are limited and do not grow exponentially.
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Therefore, we can limit χ to a reasonable value, one that still accurately represents the

state but needs much less space to store.

This is only half the picture, however. The application of an arbitrary operator as shown

in Eq. (2.41) can mix up the all the indices and generate correlations, of which will factor

into an inefficient form. The solution to this is to impose the same notion of locality

onto the operator representation as well:

O ≡

τ1 τN

τ ′1 τ ′N

, (2.46)

or with using products of matrices,

O =
∑

τ1,τ2,...,τN
τ ′1,τ

′
2,...,τ

′
N

W τ1,τ ′1W τ2,τ ′2 . . .W τN ,τ
′
N |τ1, τ2, . . . , τN 〉

〈
τ ′1, τ

′
2, . . . , τ

′
N

∣∣ . (2.47)

Once again, any arbitrary operator would not decompose into this form efficiently, but

if we limit ourselves to a subset of local or “mostly local” operators then this remains an

efficient form. More importantly, applying an operator to a state means a contraction

only along one index for each lattice site, meaning that the operator can be applied

efficiently as a smaller matrix product for each site rather than a large operator over all

indices of the system. This operation is then order Ndχ2 time complexity to perform,

rather than d2N . We have again limited the computation to a polynomial rather than

exponential execution time.

A time evolution operator that is completely factorizable into this form is not par-

ticularly interesting on its own, as it would mean that each of the sites is effectively

non-interacting. However, we can get close to this form by working with operators that

we can factor into matrices that involve few adjacent sites. For this, we introduce the

complete time evolution operator for a given Hamiltonian.
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If we integrate both sides of Eq. (2.1), then the general form for the time evolution

operator—that is, the operator U(t) that brings the wavefunction from |ψ(0)〉 to |ψ(t)〉—
is

U(t) = e−ıHt/~. (2.48)

This expression is a matrix exponential of the complete Hamiltonian, and is therefore

difficult to calculate. In order to make it more tractable, we will focus on a class

of Hamiltonians that describe a one-dimensional lattice with a many-body interaction

term. As before, the general form for H is then

H =
∑

{i,j}σ

hijσc
†
iσcjσ +

∑

i

Uic
†
i↑ci↑c

†
i↓ci↓, (2.49)

where the curly brackets indicate a sum over nearest neighbors. With this form, particles

can move between adjacent sites and develop entanglement between them, but the only

way one can get from one end to another is to go through all the intermediate sites.

This Hamiltonian allows us to perform a Suzuki-Trotter (ST) expansion [67] on the

exponential time evolution operator. An ST expansion is similar to a series expansion

except that the norm is conserved and the resulting operators are unitary, leading to a

minimization of the accumulation of error. We first break the Hamiltonian in Eq. (2.49)

into two parts, H = Hodd +Heven, with

Hodd =
∑

i odd

(∑

σ

hi,i+1,σc
†
iσci+1σ + Uic

†
i↑ci↑c

†
i↓ci↓

)
(2.50a)

Heven =
∑

i even

(∑

σ

hi,i+1,σc
†
iσci+1σ + Uic

†
i↑ci↑c

†
i↓ci↓

)
. (2.50b)

Then, for a small timestep δ, the time evolution operator can be approximated by

U(δ) = e−ı(Hodd+Heven)δ/~ ≈ e−ıHoddδ/(2~)e−ıHevenδ/~e−ıHoddδ/(2~). (2.51)

This approximation becomes exact in the limit of small time steps, U(t) = limδ→0 U(δ)t/δ,

so the general method of time evolving the state is to choose a sufficiently small δ and
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then iteratively evolve forward in time. All of the operators in each of Hodd and Heven

commute with each other, so they can be further broken down into single operators

acting on pairs of sites. Graphically, we have decomposed our operator into the form

U(δ) ≡

τ1 τN

τ ′1 τ ′N

. (2.52)

Each block in this representation takes in two adjacent lattice sites and performs the

infinitesimal time evolution step, which is then fed forward to the other set of adjacent

sites and so forth.

At this point, the time evolution operator is not fully decomposed into MPO form, so

when a block is applied to the state it merges the two adjacent matrices into a single

three-index tensor, which then must be re-decomposed into the MPS in order to keep

efficiently storing the state and applying the subsequent operators:

τ2 τ3

τ2 τ3 τ2 τ3

. (2.53)

The application of the operator increases the dimension of M from χ to d2χ, so the size

must be reduced to keep within an imposed limit. To do this, we must truncate the

local Hilbert space in a manner that minimizes the error. First, the new matrix L, after

applying a time evolution block, W , is

L
τi,τi+1

αβ =
∑

τ ′iτ
′
i+1γ

M
τ ′i
αγM

τ ′i+1

γβ W
τiτi+1

τ ′iτ
′
i+1
. (2.54)

To return L into a local form, a singular value decomposition (SVD) is performed to

factorize the matrix. The indices α and β in the expression for L continue on to the rest
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of the MPS and the τ indices remain free, so the SVD is done to each of d2 combinations

over τ . The SVD provides

L
τi,τi+1

αβ →
∑

γ

U τiαγλγ(V †)
τi+1

γβ =
∑

γ

M ′τiαγM
′τi+1

γβ , (2.55)

where the new matrices M ′ are M ′τiαγ = U τiαγ
√
λγ and M

′τi+1

γβ = (V †)
τi+1

γβ

√
λγ . The SVD

is exact for a given matrix L, so we still need to truncate the Hilbert space to keep

the state from growing on each application of the time evolution operator and time to

perform this operation scales as Nd2χ3. The decomposition provides a way to do this,

as the values, λ, found during the process are what is known as Schmidt coefficients [68].

These coefficients provide a well-defined measure of the degree of quantum entanglement

between the two halves of the system: site i and everything to the left and site i+1 plus

everything to the right. More specifically, the von Neumann entropy [68] between these

two halves, −∑γ |λγ |2 log |λγ |2, is zero only if the two sides are in a product state. The

MPS representation of the wavefunction has the least amount of computational com-

plexity for low quantum entanglement, so essentially the values of λ provide a measure

of which states to include such that we are using the available space most efficiently.

Since the index γ is internal to the decomposition in Eq. (2.55), we are free to choose

whatever dimension for it that we would like, which, in turn, alters the size of the new

M ′ matrices. In order to retain the exact decomposition, the dimension of γ would need

to be the minimum of the dimension of α and β. However, with this approximation

we can truncate the sum over γ to include the most important terms. Typically, the

process involves sorting λ in decreasing order, then keeping the terms that are greater

than some small cutoff value, ε, up to a maximum of χ terms.11

We now have three controllable sources of error that we can use to converge our final

solution:

11An important component to keep in mind here is that the truncation of the local Hilbert space
destroys the normalization, so that also needs to be accounted for at some point during these operations.
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1. δ, the time difference taken for each forward time step. The ST expansion is

exact for δ → 0, so this needs to be taken as small as possible. Since the time

evolution operator is applied sequentially, the time complexity grows as 1/δ. The

difference in space complexity is negligible because typically only information on

certain observables is stored with each time step rather than the a complete state.

2. ε, the cutoff value for Hilbert space truncation. This is included to keep the

Hilbert space from immediately growing exponentially and saturating the number

of states. It is usually set somewhere on the order of 10−9 and adjusted to confirm

convergence on the other two terms. The computational complexity of this depends

on the specific details of the system and how quickly the correlations can grow.

3. χ, the maximum number of states kept per site. The larger this value is, the

closer to the exact solution this representation becomes. However, this parameter

also carries with it the highest computational penalty. The space complexity for

storing the state is Ndχ2, the time to apply a time evolution step and the factor-

ization component grows as Nd2χ3. For most types of one-dimensional systems,

the value for χ is somewhere around 500 to 5000 and it is typically used as the

main convergence parameter.

Modification of these parameters and monitoring the error allows us to find the calculated

dynamics to an arbitrary degree of precision, without an exponential growth in the

computational complexity.

Following the same method, the ground state of a many-body system can be found

through an imaginary time evolution: applying U(−ı~τ) = e−Hτ iteratively (with small

τ and normalization) will drive the system towards a global ground state. All of the

eigenstates decay proportionally to their eigenvalue, so the lowest one eventually domi-

nates. In practice, it may be more efficient or stable to use a standard DMRG approach,

rather than imaginary time evolution, but the basic concepts remain the same.
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2.5 Conclusion

The toolbox for modern theoretical work in physics is enormous. In this Chapter (and the

associated Appendices), we provided an “end-to-end” introduction to the mathematical

concepts used in this thesis. That is, starting from fundamental concepts and building

out to the latest work.
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Chapter 3: Energy-resolved Atomic Scanning Probe

The time dynamics of quantum systems are naturally connected to the concept of a den-

sity of states. In non-interacting systems, it defines the energy occupation and distribu-

tion of particles. When the system is out of equilibrium, it determines what portion of

the system is available for transport, as in the Landauer and NEGF formalism discussed

in Chapter 2. In this Chapter, we extend this concept to all interacting systems—even

those that do not have well-defined quasi-particles—and discuss an operational defini-

tion of the local density of states, as defined by Eq. (2.13). This Chapter contains work

performed in collaboration with Chih-Chun Chien and Massimiliano Di Ventra.

3.1 Introduction

The density of states is a concept that permeates all of physics, from enabling the descrip-

tion of the fundamental phases of matter to quantifying surface features and defects. The

density of states, however, cannot generally be defined for many-body systems, except

when, e.g., quasi-particles emerge from the underlying interactions. Here, we give an op-

erational definition of the local density of states for both interacting and non-interacting

systems: When a steady-state current of particles—electrons, atoms, etc.—can be sus-

tained between the many-body system of interest, S, and a narrow energy band of

non-interacting states, the probe P, this indicates that S supports an infinite reservoir
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of particles at that energy, i.e., it has a finite density of states. We demonstrate that

ultra-cold atomic lattices—which are increasingly employed in the simulation of many-

body phenomena [36, 69–72]—are a natural platform for implementing this concept.

Using this operational definition, we elucidate puzzling features in interaction-induced

transport and visualize the spatial dependence of the atom density in inhomogeneous,

interacting lattices.

The scanning tunneling and atomic force microscopes are arguably the most versatile

instruments for probing materials, molecules, structures, and devices. From imaging

surface defects to probing local electronic structure to testing novel devices, they have

given the means to comprehend structures and behavior at their most basic level and

with minimal disturbance. Despite the level of detail and information provided by

these instruments, many phenomena have proven resistant to quantitative theoretical

interpretation and modeling. Increasingly, the use of tunable systems to mimic, e.g.,

condensed matter systems has been used to probe physical behavior in a way not possible

with traditional techniques. In this direction, recent experimental work demonstrated

the expansion of an atomic cloud [73], transport of quantum correlations and phase

coherence [74], and the presence of quantum effects in neutral matter transport [27, 32].

This approach holds great promise in advancing our understanding of the natural world,

especially many-body and out-of-equilibrium behavior.

3.2 Model

In this Chapter, we give the local density of states (LDOS) an operational definition in

terms of steady-state particle currents. The basic premise is that for a system to sustain a

steady-state current into a narrow energy reservoir, it must have a finite density of states

at that energy. We show how to implement this definition and apply it to many-body

systems. As we seek to harness and control quantum behavior for a new generation of

technologies, such as quantum computers, spintronic devices, and beyond, this approach
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to quantifying physical phenomena will yield an unprecedented level of detail and help in

determining the underlying theoretical description of many strongly interacting systems.

We start by recalling the operation of the scanning tunneling microscope (STM) to

measure the LDOS, D(µ), at frequency offset µ, in some region of a surface. For a

typical measurement, the tip distance is held constant while the sample bias, −V , is

changed, leading to a steady-state current given by [75, 76]

I ≈ I0

∫ 0

−eV/~
D(ω)dω. (3.1)

The LDOS is found from the differential conductance,

D(µ) ∝ dI

dV

∣∣∣∣
eV/~=µ

. (3.2)

At small bias—or when the system is well-described by non-interacting electrons—this

gives an accurate depiction of the native state at the surface.

When the system has strong many-body interactions, such as a poorly screened electronic

impurity, the applied bias will disturb the natural state of the surface by disrupting the

nearby electron density. This effect can be limited, however, by an alternative setup that

uses a narrow band probe, P, that scans in energy, rather than increasing an applied

bias, to interrogate the many-body system, S. In this setup, the current into a narrow

reservoir of bandwidth 4ωP at a frequency offset µ is proportional to the LDOS,

I ≈ −eωP
∫ µ+2ωP

µ−2ωP
D(ω)dω ≈ −4eω2

PD(µ) (3.3)

so long as ωP is small relative to variations of D(ω). Both empty and filled states can

be probed in this way by changing the filling of P. This setup requires tunability of

P: Its chemical potential, occupation, bandwidth/hopping, and contact magnitude/lo-

cation with S need to be modifiable without compromising its non-interacting behavior.

In other words, this setup may find its realization with the capabilities provided by
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Figure 3.1: Energy-resolved atomic scanning probe. To measure the many-body
LDOS, an interacting system, S, is placed in contact with a non-interacting,
narrow band probe, P. (a) The cold-atom traps are fabricated via a controlled
geometry of patterned magnets, which determine spatially-inhomogeneous cou-
pling rates and trapping frequencies. A laser sheet is initially present to prevent
the flow of atoms from S to P until a measurement is performed. (b) This sys-
tem is modeled by a 1D lattice with inhomogeneous hopping rates and onsite
frequencies in S and P. (c) A representation of the setup in frequency space

shows narrower range of frequencies and offset of the probe.

ultra-cold atoms in artificial lattice potentials. A schematic of a magnetically trapped

implementation of this setup is shown in Fig. 3.1.
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3.3 Thin Band Probe

The Hamiltonian, H, for this setup is

HS +HC − ~ωP
∑

i∈P

(
c†ici+1 + h.c.

)
+ ~µ

∑

i∈P
c†ici , (3.4)

where ωP and µ are the hopping and relative onsite frequencies respectively (i.e., the

trapping frequencies for a cold-atom system, which can be controlled via magnetic poten-

tials) and c†i (ci ) are the creation (annihilation) operators of site i. HS is the many-body

Hamiltonian of S. HC is the contact Hamiltonian between S and P, which we also take

to having hopping frequency ωP , which gives a weak contact to a narrow band.

A laser sheet prevents contact between S and P while they are loaded with atoms and

cooled to their independent ground states. One can also excite S by a quench or some

other process; the operational definition of the LDOS also extends its applicability to

nonequilibrium conditions, in addition to many-body systems. At t = 0, the sheet is

removed. Then the composite system evolves, giving rise to the current I, which yields

the LDOS at frequency µ according to Eq. (3.3). The measurement is repeated for each

µ of interest.

As noted above, the experimental realization of this approach requires tunability of

the hopping frequencies (the probe bandwidth) and the onsite frequencies (the probe

offset), among other parameters. The trap depth and spacing controls the hopping and

this can be tuned via the magnitude of the trapping potential. The onsite frequency

is related to the ground state of each well, which can be modified by controlling the

shape of the potential in each well. This potential can be created by atom chips with

magnetic fields generated by patterned circuits of magnetic materials [77–80] or through

spatial light modulation (SLM) techniques [81–83], as illustrated in Fig. 3.1. In S, the

interactions can be controlled by using a Feshbach resonance [84] to alter the scattering

length, allowing for simulation of different types of many-body systems, such as strength

of interactions and spatial dependence. By engineering a series of magnetic potentials
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with differing onsite energies and contact locations, one can measure the LDOS as a

function of frequency at any location within S.

With this method, we examine a system of interest with Hamiltonian

HS = −~ωS
∑

i∈S,σ

(
c†i,σci+1,σ + h.c.

)
+ ~

∑

i∈S
Uini,↑ni,↓, (3.5)

where ωS is the characteristic tunneling frequency, ni,σ = c†i,σci,σ is the number operator,

and Ui is the interaction frequency. The two components may refer to the spins of

electrons or internal states of ultracold atoms. When inter-spin interactions are present,

HP is expanded in a similar manner to include spin. For numerical calculations, we use

ωS = 1 kHz, a typical cold-atom tunneling frequency [72].

We first examine a spin-polarized, non-interacting system S: Ui = 0 for all i, which

can be both solved exactly for the current [85, 86] and the result compared to the exact

LDOS (see Sec. 3.5). Figure 3.2c shows the reconstruction of the LDOS using a finite

lattice and time average. There is quantitative agreement between the exact LDOS and

that from the energy-resolved probe. The dominant source of error in the LDOS is

the finite probe bandwidth ωP , not the length of the lattice or the time of the average

(Fig. 3.2d and e). This demonstrates that cold-atom systems or many-body simulations

are well suited to implement this method, which are limited to finite lengths and times.

As ωP → 0, the total lattice length, N → ∞, and the averaging time, |T | → ∞, the

exact LDOS would be recovered.



57

0 10 20 30 40 50 60

t (ms)

−3

−2

−1

0

1

µ
(k

H
z)

0 10 20 30 40 50 60

t (ms)

−1

0

1

2

3

µ
(k

H
z)

−4 −3 −2 −1 0 1 2 3 4

µ (kHz)

LD
O

S
(a

rb
.

un
its

)

ωF

N = 64

N = 32

Exact

N →∞

101 102 103

N

0

5

10

%
E

rr
or

5 10 15 20 25 30

|T | (ms)

0

5

10

%
E

rr
or

0

40

80

I
(p

ar
tic

le
s/

s)

a

b

c

d e

Figure 3.2: Non-interacting, fermionic LDOS. The electronic current versus time
for the (a) occupied S states—using an initially empty P—and (b) unoccupied
S states in a 1D lattice versus µ, the shift in onsite frequency of P. Here, the
total lattice length, N , is 64, the bandwidth of the probe is 400 Hz, and the
dotted lines indicate the region averaged for the current, t ∈ T = [2 ms, 32 ms]

(to minimize the influence of transient currents and edge effects).
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Figure 3.2: (Continued) (c) The average currents are proportional to the LDOS
for S, displayed here with an offset for clarity. The shaded regions represent
the error calculated using the standard deviation of the current in the region T
combined with a broadening error of size 2ωP . The Fermi level, ωF , is found
from where the two measurements connect. (d) Integrated error of the normal-
ized LDOS versus total lattice size and (e) versus averaging time, |T |, (blue
solid line is N = 32, green dashed line is N = 512). The baseline error (when
N →∞, the dotted line in (d) and (e)) is set by the finite ωP = ωS/10, which
broadens the true LDOS. For short lattices and times, the error in the LDOS is
already small. Thus, even modest cold-atom systems or numerical many-body

calculations can effectively reconstruct the LDOS.
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3.4 Interacting System Simulation

We now apply the same approach to an interacting system with a constant Ui = U .

Figure 3.3 shows the LDOS of a Mott-insulator like state. As the interaction strength

increases, the band splits and a gap forms between the occupied and unoccupied bands,

as is typical for a Mott insulator. However, the Fermi frequency, ωF ≈ U/2, and the oc-

cupied band is shifted to higher frequency. The observations also agree with predictions

from Green’s function in the hopping-only and interaction-only limits (see Sec. 3.5). In

Ref. [50], it was found that there is a filling-dependent, conducting-to-nonconducting

transition as a function of U for interacting-induced transport: An inhomogeneous

quench in U , where the interaction strength is taken from 0 to a finite value for half the

lattice, drives particles from that half of the lattice to the other (non-interacting) half

so long as U is not too strong and the filling not too large. Figure 3.3b demonstrates

that it is this shift of the occupied bands to higher frequency that aligns occupied states

in the interacting side to open states in the non-interacting side, allowing particles to

flow. As U is increased further, eventually only the tail of the occupied band is aligned

with open states, thus giving a decreasing current.

When spatial dependence of the density of states is of interest, the probe can be used

in a way analogous to a “scanning-mode”: The probe can be coupled to the system at

any point along its length through a right angle construction, as shown in Fig. 3.4a.

Examining a system with spatially inhomogeneous interactions—e.g., a linear decrease

in the induced U , Fig. 3.4b—can determine both how the particle density shifts in space

and energy. Figure 3.4c shows the occupied and unoccupied LDOS of this inhomogeneous

lattice as a function of position. The spatial decrease of the interactions forces particles

to the region with small interactions, where at the very end the lattice has an LDOS

similar to a non-interacting system. Just near the non-interacting boundary, however, a

large peak in occupied density of states forms, i.e., states pinned well below the Fermi

level. On the interacting side, the number of particles is small with an LDOS just
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Figure 3.3: Many-body, fermionic LDOS. The time-dependent current was
found using numerical many-body calculations for the (a) occupied and unoccu-
pied states of a 1D lattice with a constant onsite interaction term Ui = 0 kHz,
2 kHz, 4 kHz (from top to bottom), and total size N = 32. (b) The resulting
LDOS for U ∈ {0 kHz, 2 kHz, 4 kHz }, displayed with an offset for clarity, using
the same averaging procedure as performed as in Fig. 3.2, with the shaded re-
gions indicating the standard deviation of the current combined with the probe
broadening error. Note that a steady-state still forms as the system ceases to
be a true insulator once it is connected to the non-interacting probe. As U
increases, a gap forms between the occupied and unoccupied bands, in addition

to causing a pronounced broadening of both of the bands
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below the Fermi level. An even-odd effect is visible, which is due to finite lattice effects,

creating oscillations away from the boundaries.

3.5 Methods

The non-interacting lattice is exactly solvable for both the current and the LDOS. For

the current, we need the retarded Green’s function for a semi-infinite lattice with onsite

frequency µ and hopping frequency ωP , which is [86, 87]

grP(ω) = (1/2ω2
P)

[
(ω − µ)− ı

√
4ω2
P − (ω − µ)2

]
. (3.6)

Using this expression, the current for the infinite lattice, N → ∞, is given by the

Landauer formula,

I =
e

2π

∫ ∞

−∞
dω [fS(ω)− fP(ω)]T (ω), (3.7)

where fS(P) are the initial particle distributions (Fermi-Dirac distributions or completely

filled/empty) in S(P) and T (ω) is the transmission coefficient.

T (ω) =
4 Re

[√
4ω2
P − (ω − µ)2

]
Re
[√

4ω2
S − ω2

]

∣∣∣µ+ ı
√

4ω2
P − (ω − µ)2 + ı

√
4ω2
S − ω2

∣∣∣
2 . (3.8)

Implementing the setup with fP(ω) ∈ {0, 1} gives the reconstructed LDOS as simply a

sum of the occupied and unoccupied states, and also directly yields the Fermi level, ωF .

In the main text, the system of interest S is half filled and in its zero temperature ground

state. Here we show, for simplicity, how the LDOS of a fully filled non-interacting system

can be mapped out. The current in this case is I = e
2π

∫ µ+2ωqp
µ−2ωqp

T (ω)dω. When ωP � ωS ,

only
√

4ω2
P − (ω − µ)2 is changing significantly while

√
4ω2
S − ω2 is relatively smooth.

Thus, we can integrate out the rapidly changing part and substitute the averaged value

for the smooth part, which leads to

I ≈ e
(
ωP
ωS

)2√
4ω2
S − µ2. (3.9)
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Figure 3.4: The “scanning-mode” of the energy-resolved probe. (a) Perpendic-
ular geometry with S as the interacting system and P as the probe. The LDOS
calculation was repeated for each site i ∈ S. (b) S has an inhomogeneous in-
teraction profile: a linear decrease from U = 4 kHz on one end to U = 0 kHz
on the other. (c) The LDOS for occupied and unoccupied states as a function
of frequency offset µ and contact lattice position i. The weakly-interacting re-
gion of the system allows more particles to occupy lower frequency states, while
the more strongly-interacting side forces the open states well beyond the Fermi
level. In addition, an even-odd effect is visible, which is due to the finite size of

the lattice, creating oscillations from the boundary.
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When compared to Eq. (3.3), the exact LDOS, Dex(µ) =
√

4ω2
S − µ2/(4ω2

S), for a non-

interacting S can be extracted. The remaining terms in the the full expression broaden

the reconstructed LDOS by approximately the probe bandwidth, 4ωP , which thus has to

be small enough to discriminate features in the LDOS of S and, when using a cold-atom

setup, the bandwidth should be large enough to get an appreciable current.

For systems in the thermodynamic limit, the LDOS is related to the real-space Green’s

function by [88]

D(r, ω) = − 1

2π
Im [gr(r, r, ω)] . (3.10)

The Green’s function of the Hubbard model, interestingly, are known in the two limits

where U = 0 and ωS = 0. This allows us to better understanding our results. When

U = 0, the Green’s function of the last site of an semi-infinite chain is given in Eq. (3.6).

Thus, D(ω) =
√

4ω2
S − ω2/(4ω2

S), which agrees with the Landauer formula shown above.

When ωS = 0, the Green’s function on a selected site is [89]

grS(ω) =
1

2π

(
1− (n/2)

ω − ω0
+

n/2

ω − ω0 − U

)
. (3.11)

Here n is the occupation number and ω0 is the onsite frequency term, which plays the role

of chemical potential. At half filling, one may choose ω0 = 0. By analytic continuation

ω → ω − i0+, we obtain D(µ) = (1/4π2){[1 − (n/2)]δ(µ − ω0) + (n/2)δ(µ − ω0 − U)}.
Thus, there are two peaks at ω0 and ω0 + U . Away from the isolated limit, the two

peaks broaden into two bands centered around ω0 and ω0 +U , and this agrees with our

observation shown in Fig. 3.3.

In order to extract the LDOS from real-time measurements on finite lattices, the current

must be averaged over a finite time, i.e., the current will be in a quasi-steady state. The

estimate of the LDOS is thus

D(µ) ∝ 1

|T |

∫

T
I(t)dt. (3.12)
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As |T | , N →∞, this will converge to the true steady state. As we demonstrate, already

for very small lattices an accurate LDOS can be obtained and thus only modest resources

are needed.

The numerical calculations are performed as follows: For the non-interacting system, the

current was found from the numerical integration of the equations of motion [85, 86].

The transient current when the probe is placed in contact with the system is damped on

the characteristic tunneling time and the recurrence time is proportional to the lattice

size, which determine both the lower and upper limits to the time region T given a finite

lattice length. We use T = [2 ms, N/2 ms], where N is the lattice length. We can also

define an exact error for the non-interacting case,

% Error = 100% ·

√∫
[D(µ)−Dex(µ)]2 dµ
√∫

Dex(µ)2 dµ
, (3.13)

where Dex(µ) is the exact LDOS.

The uncertainty due to probe broadening is found from the assumption that an state

can be contribute to the current anywhere within the probe bandwidth of 4ωqp, which

results in error, σ+(µ), of

D(µ)−max [D(µ), D(µ− 2ωP), D(µ+ 2ωP)] (3.14)

for the positive µ side and, σ−(µ),

D(µ)−min [D(µ), D(µ− 2ωP), D(µ+ 2ωP)] (3.15)

for the negative side. This is combined with the standard deviation error from T for a

final error of

σ±tot =
√
σ2
± + σ2

stdev. (3.16)
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For the interacting systems, we perform time-dependent, density matrix renormaliza-

tion group calculations [15, 90] within the ITensor tensor product library [91]. In all

simulations, the time step was reduced until the calculation converged with respect to

energy conservation and the maximum matrix bond dimension was allowed to increase

without bound. The energy cutoff was set to 10−9ωS . The averaging is done in the

region T = [2 ms, N/2 ms], as with the non-interacting case.

3.6 Conclusion

The density of states is a concept of immense importance to all areas of physics. We

provide an operational definition of the LDOS for many-body systems, applicable to

in- and out-of-equilibrium cases, fermionic or bosonic system, etc. The core principle is

that for a steady-state current to flow into an empty, narrow probe band, there must be

occupied states at that energy (similarly for a full narrow band and unoccupied states).

We demonstrate that a cold-atom setup will allow for the measurement of this oper-

ational definition: The many-body LDOS can be extracted with minimal disturbance

to the system. A related setup, where tunable cold-atom systems are used to more

controllably—i.e., with less disturbance to the native state—implement Eqs. (3.1) and

(3.2), is also beneficial, but the narrow band setup we propose minimizes the total cur-

rent flowing and all other disturbances, more so than that of a mimicking of the STM.

The ability to probe the undisturbed density and occupation of states versus energy

and position illuminates the structure of many-body systems and allows one to make

progress in the theoretical description of underlying physical processes.



66

Chapter 4: Interaction-Driven Electronic Transport

The previous Chapter discussed the formation of a steady state from an interacting

system, initially in its own ground state, that was coupled to another system at t = 0.

Alternatively, it is possible to generate a steady-state condition though manipulating the

interaction strength. Here, we examine a system, which starts in the non-interacting

ground state, which is perturbed by the switching on of an inhomogenous interaction.

This Chapter contains work performed in collaboration with Chih-Chun Chien and Mas-

similiano Di Ventra and the full version is found in Ref. [50].

4.1 Introduction

Advances in experimental studies of quantum transport of ultra-cold atoms in optical

lattices [27, 69, 70, 73, 92] draw attention to different aspects of systems out of equi-

librium. In conventional condensed matter settings, an electrical current is induced by

applying a voltage difference across the sample. The interaction of the charge carri-

ers are usually homogeneous, except near impurities. In contrast, ultra-cold atoms are

charge neutral and so far the motion of an atomic cloud has been generated by placing

the cloud away from its equilibrium position [73] or by a sudden shift of the minimum
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of its trapping potential or its distortion [27, 69, 70, 92]. The interactions are gener-

ated by either adding another species of atoms [73] or tuning magnetic-field controlled

collisions [70, 92].

In this Chapter we instead suggest a method to drive a mass current of atoms via local

tuning of interactions. This, in turn, reveals interesting phenomena otherwise difficult to

observe in conventional solid state systems. A key to realize interaction-induced trans-

port is controllable inhomogeneous interactions – a novel possibility offered by optically

tunable collisions of ultra-cold atoms. The optical Feshbach resonance (OFR) [93–96]

is a promising technique for controlling interactions locally using focused laser beams.

For instance, the spatial modulation of density using the OFR of bosons [94] demon-

strates the power of controllable inhomogeneous interactions. Other exotic equilibrium

structures may also be generated by using this tool [97].

We also point out that these optically controlled interactions can be time dependent.

Suddenly turning on the interactions, for instance, will drive the system out of equilib-

rium. Thus, instead of using external driving mechanisms such as a voltage bias, it is

possible, with suitable initial conditions and patterns of interactions, to induce a mass

current. We show that for reasonably weak interactions the mass current of fermions

is similar to a charge current in electronic systems. Further, increasing the interac-

tion strength leads to the atomic equivalent of negative differential conductance, where

the current reaches a maximum value and then subsequently decreases. A mean-field

approximation predicts that this decrease leads to a conducting-to-nonconducting tran-

sition after the interaction strength exceeds some threshold (dependent on the filling).

This transition may be explained by a mismatch of energy spectra between the interact-

ing and non-interacting parts of the system, but this argument does not rule out other

possible current-carrying states.

Time-dependent density-matrix renormalization group (td-DMRG) simulations [98], as

well as a higher-order approximation, demonstrate that indeed a conducting to non-

conducting transition should exist in the strongly interaction-imbalanced regime when



68

U=0

t=0

U=0

t>0

I

U>0

Figure 4.1: Schematic plot of the experimental set up we simulate. Non-
interacting ultra-cold fermions are loaded into the lowest energy state of a 1D
homogeneous optical lattice. At t = 0, a focused laser beam then induces on-
site repulsive interactions of the Hubbard type on the left half of the lattice.
Due to the imbalance of interactions, a mass current is induced. We emphasize
that there is no need to “mechanically” set the atoms out of equilibrium by
tilting a potential nor is it necessary to introduce additional species of atoms
or dissipation. Moreover, this setup may also be implemented to study quench
dynamics [104]. The gray dots emphasize that atoms may be in a superposition

of different quantum states.

the initial state is not far away from a band insulator. The threshold value for the tran-

sition, however, differs from different approaches. Importantly, the many-body negative

differential conductance remains at all levels of approximation. This is the counterpart

to negative differential conductivity observed in solid-state structures [99, 100], where

changes in the carrier density or subdivisions of the Brillouin zones cause non-monotonic

dependence of the current on the external field strength. We note that, recently, negative

mobility of cold atoms in temporally modulated optical lattices [101] and negative differ-

ential conductance in fermion-boson mixture in optical lattices [102] have been discussed.

We propose, alternatively, that one may observe negative differential conductance in a

setup where the optical lattice potential is static and by tuning the interactions in real

space. We focus on fermions but notice that, for the Bose-Hubbard model, Ref. [103]

considers the sudden connection of a superfluid and a Mott insulator with different

chemical potentials and found a mass current as well.
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4.2 Interaction-induced Transport

In our approach – which explicitly follows the dynamics of mass transport – we imple-

ment the micro-canonical formalism (MCF) [55, 105] as in Refs. [85, 106] which monitors

the evolution of the correlation matrix. When applied to a system of noninteracting

atoms on a 1D optical lattice suddenly losing the atoms on the right half of the lattice,

MCF shows very different dynamics for bosons and fermions [85]. While the bosonic

current decays to zero in the thermodynamic limit, the fermionic current exhibits a quasi

steady-state current corresponding to a plateau in the current as a function of time. Im-

portantly, the MCF is designed for finite closed quantum systems so it is particularly

suitable for studying the dynamics of ultra-cold atoms. Although our proposed setup

can be applied to bosons, to explore their dynamics theoretically one has to consider also

the effect of the quasi-condensate which renders the analysis more involved. Therefore,

here we focus only on fermions.

We consider Npσ (σ =↑, ↓) two-component fermions, with Np↑ = Np↓, loaded into a

1D optical lattice of size N , see Fig. 4.1. This type of finite-length 1D lattice may be

generated by inserting a thin optical barrier [107] into a ring of optical lattice [108]. The

resulting C-shaped lattice is geometrically identical to the setup here. This confining

potential creates a uniform lattice and does not require a background harmonic trap-

ping potential parallel to the lattice. The background interactions are assumed to be

negligible. The system is initially described by the tight-binding tunneling Hamiltonian

H0 = −t̄∑〈ij〉,σ c
†
iσcjσ, where 〈ij〉, t̄, c†iσ (ciσ) denote nearest-neighbor pairs, the hopping

coefficient, and the creation (annihilation) operator of site i, respectively. The unit of

time is t0 ≡ ~/t̄ and is about few ms for reasonable lattice depths [85].

The initial state corresponds to the lowest energy state of H0, with no correlations

between up and down spin states (see, e.g., Refs. [85, 106]). The system is then set out

of equilibrium by introducing interactions among atoms on the left half of the lattice

by, e.g., optically-induced collisions using a focused laser beam. Here we concentrate on

moderate repulsive interactions and non-integer filling. This allows us to focus on the
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dynamics induced by the interactions and avoid unnecessary confusions about possible

equilibrium phase transitions such as the Bardeen-Cooper-Schrieffer instability or the

Mott-insulating phase in uniform and static interacting systems [23]. We model an

instantaneous switch-on of the interactions with a sharp interface between the interacting

and non-interacting regions and relax the former condition later on.

The Hamiltonian generating the dynamics is

He = H0 +
∑

i∈L
Un̂iσn̂iσ̄. (4.1)

Here n̂iσ = c†iσciσ, U is the onsite repulsive coupling constant, L denotes the left half of

the lattice, and σ̄ is the opposite of σ. This model should be appropriate for moderate

lattice depth [109]. Since t̄ can be tuned by the lattice depth and U can be tuned by

OFR, U/t̄ can span a broad range so our study should be relevant to experiments.

The equations of motion for the correlation matrix are i(∂〈c†iσcjσ〉/∂t) = 〈[c†iσ, He]cjσ〉+
〈c†iσ[cjσ, He]〉, where [·, ·] denotes the commutator of the corresponding operators. The

explicit expression can be found using standard anti-commutation relations. After some

algebra, one gets

i
∂〈c†iσcjσ〉

∂t
= t̄Xσ − U(〈c†iσ̄ciσ̄c

†
iσcjσ〉)i∈L + U(〈c†iσcjσc

†
jσ̄cjσ̄〉)j∈L. (4.2)

Here Xσ ≡ 〈c†i+1,σcjσ〉+ 〈c
†
i−1,σcj,σ〉− 〈c

†
iσcj+1,σ〉− 〈c†iσcj−1,σ〉 and niσ = 〈n̂iσ〉. We solve

Eq. (4.2) both at the mean-field level and by adding higher-order correlations.

The mean-field level solution can be obtained by Wick decomposition of 〈c†iσ̄ciσ̄c
†
iσcjσ〉 as

〈c†iσ̄ciσ̄〉〈c
†
iσcjσ〉 since no spin-flip mechanisms are present. This is the standard Hartree-

Fock approximation. The equations are closed after this approximation. Thus the dy-

namics after the interaction is switched on can be monitored by integrating Eq. (4.2) with

the initial condition cijσ(t = 0) given by the lowest energy state of the non-interacting

Hamiltonian. We update Eq. (4.2) in a symmetric fashion so that 〈c†iσcjσ〉 = 〈c†iσ̄cjσ̄〉
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Figure 4.2: Mean-field particle number and number fluctuation dynamics. (a)
NLσ and (b) ∆N2

Lσ−∆N2
Lσ(t = 0) with N = 128 and Npσ = 64 for each species
from mean-field dynamics.

at any time. Later on we will also go beyond mean-field by developing a higher-order

approximation and by performing td-DMRG simulations.

In addition to the current Iσ = 2t̄Im〈c†N/2,σcN/2+1,σ〉, we also evaluate the particle

number on the left half lattice, NLσ = 〈N̂Lσ〉 and its fluctuations ∆N2
Lσ = 〈N̂2

Lσ〉 −
〈N̂Lσ〉2, which is another property that can be determined experimentally. Here N̂Lσ =
∑

i∈L n̂iσ. Explicitly,

∆N2
Lσ =

N/2∑

i=1

niσ(1− niσ)− 2

N/2∑

i<j

|cijσ|2. (4.3)

Right before the interactions are switched on, there can be initial number fluctua-

tions due to the wave nature of the initial quantum state. We thus present ∆N2
L(σ) −

∆N2
L(σ)(t = 0) which reflects the change of the number fluctuations due to the interaction-

induced dynamics.
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4.3 Results and Discussions

Figure 4.2 shows the particle number and its fluctuations of the left half lattice with

N = 128 and Npσ = 64 for each species. Since the system size is finite, there is reflection

of the current off the boundary after a revival time but we focus on dynamics before

this revival occurs. As U/t̄ increases, one can see that instead of inducing more fermions

to move from the left to the right, above a certain threshold value the transport is no

longer observed within a reasonable time scale (e.g., t ≤ (N/2)t0). This corresponds to a

conducting-nonconducting transition and it can be found at other ratios of f ≡ Npσ/N .

In general the threshold Uc/t̄ decreases as f increases. We will show that this is because

for higher filling the onsite interaction energy dominates more easily. One can see this

transition even better in the average current itself.

We note that it has been shown that with suitable initial conditions non-interacting

fermions can develop a quasi steady-state current (QSSC) [85, 110]. This is so also for

the present interacting case. The fermionic current is shown in Figure 4.3(a) for N = 128

and Npσ = 64 for each species. The current may be measured by the protocol of Refs. [85,

111]. The plateaus shown in Iσ(t) indicate the existence of QSSCs. To smooth over small

oscillations, we define an averaged current as 〈Iσ〉 ≡ (1/30t0)
∫ 40t0

10t0
dtIσ(t) and plot 〈Iσ〉

as a function of U/t̄ for Npσ = 32, 64, 96 in Fig. 4.3(b). For small U/t̄ we clearly see that

the averaged current increases linearly with U/t̄. Then the dependence deviates from a

linear form before the conducting-nonconducting transition. For even larger U/t̄, 〈Iσ〉
decreases until no finite averaged current can be found. The non-monotonic dependence

of 〈Iσ〉 on U resembles the negative differential conductivity observed in conventional

solid-state devices [99, 100]. In the strongly interaction-imbalanced regime, we found

oscillations in the density profile and further studies may connect those oscillations to

the charge domains in solid-state devices exhibiting negative differential conductivity.

The interaction term thus acts as a bias on the left half lattice if U/t̄ is small. Here we

investigate the validity of this statement. By extracting the slope of the linear part of

〈Iσ〉 for small U/t̄, one can study how efficient the interaction can induce a current. The
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Figure 4.3: Average current dynamics and energy spectra. (a) Iσ and (b) 〈Iσ〉 of
the fermionic case with N = 128 and Npσ = 64 for each species from mean-field
dynamics. The inset of (b) shows Geff ≡ f−1d〈Iσ〉/dU (in units of 2π/h) for
small U/t̄ as a function of Npσ for N = 128, where f = Npσ/N is the initial
filling factor. The dashed line shows G0 ≈ 0.152 in this unit. The energy spectra
of the left (L) and right (R) half lattices when U is switched on are shown for

U/t̄ = 7 (c) and U/t̄ = 8 (d). Here N = 128 and Npσ = 64.

inset of Fig. 4.3(b) shows the effective conductance Geff ≡ f−1d〈Iσ〉/dU as a function of

Npσ for a fixed N , where f = Npσ/N is the initial filling factor. As Npσ → N the system

approaches a band insulator1 and there is only a tiny range of U/t̄ where a finite 〈Iσ〉
exists. This could contribute to some inaccuracy of the extraction of the slope close to

Npσ → N . Nevertheless, as shown on the inset of Fig. 4.3(b) the effective conductance

is close to the ideal quantized conductance G0 = (2π~)−1 for arbitrary initial filling.

1For a single-band model of fermions considered here, Npσ/N = 1 corresponds to a band insulator
and no current can flow even in the presence of inhomogeneous interactions.
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Figure 4.4: Currents induced by different ways of switching-on the interac-
tion. A sudden switch-on of the interaction (dashed line), linear switch-ons
with switching times tm = 5t0 (black) and tm = 10t0 (red), and a multi-step
switch-on (dot-dash line). The inset shows the time dependence of U for the

four cases. Here N = 128 and Npσ = 64.

This establishes the feasibility of using a weak inhomogeneous interaction as an efficient

driving force for inducing a current and its correspondence with a bias, ∆µ = fU .

In the weak interaction regime, we found another interesting phenomenon. By consider-

ing different ways of switching on the interaction, one may wonder whether the system

will reach the same magnitude of the QSSC. We simulate different switching-on scenarios

by introducing a time scale tm such that the interaction grows from zero to its full value

during tm and remains a constant after that. Figure 4.4 shows that despite different

time-dependences of the interaction, the system always reaches the same magnitude of

the QSSC. We have also checked other more complicated functional forms for switching

on the interaction and found the same QSSC. Importantly, even if the system is over-

excited by a spike in the time dependence of U , when U comes back to a constant value

the height of the QSSC coincides with the case of a sudden switch-on of the interaction

as shown on Fig. 4.4. Thus the magnitude of the QSSC is robust (memory-less) against

different ways the interaction is switched on. This feature makes the interaction-induced

transport appealing for making devices since a steady output (the QSSC) is insensitive

to the transient behavior of the driving force (the interaction).

When the optically-induced interactions are switched on, it is possible that the onsite
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potential could be shifted due to the increase of the kinetic energy of the atoms in-

teracting with the incoming photons. We study possible effects by adding an extra

term V
∑

i∈L,σ n̂iσ to He of Eq. (4.1) to simulate this effect with a positive V . This

shift of the onsite potential acts like a bias so one might expect that more current will

flow to the other side. However, the negative differential conductance and the mean-field

conducting-nonconducting transition are robust against this positive potential shift. The

energetic mechanism described below will make it clear why a positive potential shift

will not affect the results qualitatively, thus showing that it is not sensitive to this type

of modification of the Hamiltonian.

We now discuss the reason behind the negative differential conductance and the con-

ducting to non-conducting transition, which is energetic in nature. In order to obtain a

“macroscopic” steady-state current, αN particles must be transferred from the left to

the right halves, where α is some small proportionality constant. However, this entails

a change in energy, as the particle density decreases on the site with interactions, and

this effect must be compensated by an energy change due to rearrangement of the single

particle states. To be more concrete, immediately after interactions are turned on, the

system is still in the ground state of H0. However, the energy has shifted to

E = E0 + U
∑

i∈L
〈niσniσ̄〉0 = E0 + U

∑

i∈L
〈niσ〉0 〈niσ̄〉0 , (4.4)

where Wick’s theorem has been applied since the system is in the ground state of H0.

The subscript of 〈· · · 〉 denotes the time when the expectation is taken. For half-filling,

this gives an energy E = E0 + UN/8. For arbitrary filling f , it is

E ≈ E0 + f2UN/2, (4.5)

where the expression is approximate since not all site occupation numbers will be exactly

f (for each spin component) .
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The energy at some later time will still be E (since no further changes have been made

to the Hamiltonian), but will have the form

E = 〈H0〉t + U
∑

i∈L
〈niσ〉t 〈niσ̄〉t (4.6)

in the mean-field approximation. Assuming the αN atoms are taken uniformly from the

left half, the energy is

E ≈ 〈H0〉t + f2UN/2− αfUN. (4.7)

Taking the difference of Eq. (4.7) and Eq. (4.5), and using energy conservation, gives

〈H0〉t − E0 ≈ αfUN . However, the quantity 〈H0〉t − E0 can not be arbitrary, since we

have a finite bandwidth. Regardless of whether one has an interacting or noninteracting

state, the largest energy change due to the H0 contribution is 4t̄αN , corresponding to

taking the αN particles from the lowest part of the band (on the left half) to the highest

part (on the right half). This gives

αfUN . 4t̄αN −→ U . 4t̄/f (4.8)

and thus results in a threshold value of U . Beyond this value of U , a macroscopic

current can not flow within the mean-field approximation and when the particles are

taken uniformly from the interacting lattice. We remark that here we consider the

lowest energy band of the optical lattice. If the interaction energy exceeds the band

gap separating different bands, the system may re-enter a conducting state. We also

remark that energy mismatches can results in other interesting phenomena as discussed

in Refs. [112, 113].

To demonstrate this energetic mechanism, Fig. 4.3(c) and (d) show the energy spectra

of the left (L) and right (R) half lattices when U is switched on for N = 128 with Npσ =

64. When U/t̄ = 7 (panel (c)), there is still an overlap between the two spectra and

exchanging atoms in an energy-conserving fashion is possible. For U/t̄ = 8 (panel (d)),

there is no overlap between the two spectra and the system evolves into a nonconducting
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state. This also explains why the phenomenon of negative differential conductance is

robust against an additional positive onsite bias. Any further increase of the onsite

energy separates the two energy spectra of the left and the right sides even farther

so the nonconducting state remains. Importantly, this energetic mechanism applies to

other types of setups for studying transport phenomena.

However, other possibilities may occur in interacting systems for large U/t̄ when a

homogeneous conducting state is no longer favorable. From Eq. (4.6) and the discussion

below Eq. (4.8), states could be generated that have an inhomogenous density which

would give enough “energetic relief” to allow a macroscopic current to flow.2 In the

mean-field solution, however, such current-carrying state could not be found. Here

we emphasize that the nonconducting state is dynamically generated and thus is very

different from the widely-discussed Mott insulating phase at integer fillings, which is

an equilibrium ground state. We now consider a higher-order approximation and also

td-DMRG simulations.

4.4 Higher-order Correlations and td-DMRG

In order to determine the accuracy of the mean-field simulations above, we also perform

simulations with higher-order correlations and with td-DMRG [98]. In the higher-order

approximation, we keep two-particle correlations, rather than truncating at the single-

particle level.In this approximation, we preserve the two particle correlation functions,

i.e., we do not use a Wick decomposition at the two-particle level. Rather, we decom-

pose the three-particle correlation functions into products of single-particle correlation

2We found density modulations in the nonconducting state, too.
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functions and two-particle correlation functions, e.g.,

〈
c†iσcjσc

†
kσclσc

†
mσ̄cnσ̄

〉
=

1

3

(〈
c†mσ̄cnσ̄

〉〈
c†iσcjσc

†
kσclσ

〉

+
〈
c†iσcjσ

〉〈
c†mσ̄cnσ̄c

†
kσclσ

〉
−
〈
c†iσclσ

〉〈
c†kσcjσc

†
mσ̄cnσ̄

〉

+ δjk

〈
c†iσclσ

〉〈
c†mσ̄cnσ̄

〉

−
〈
c†kσcjσ

〉〈
c†iσclσc

†
mσ̄cnσ̄

〉
+
〈
c†kσclσ

〉〈
c†iσcjσc

†
mσ̄cnσ̄

〉

+ δjk

〈
c†iσclσc

†
mσ̄cnσ̄

〉)
. (4.9)

This allows us to include all of the two-particle correlation functions in the simulation.

Since there are three ways to decompose the three-particle correlation functions, we

chose to average the contributions of each in order to increase the numerical stability of

the simulation. We note that inclusion of the two-particle correlations is only a short

time approximation and the simulations can become unstable for intermediate to long

times. Thus we have restricted these simulations to short times. The results for the

average current presented in the main text are there therefore limited to relatively short

time scales for large values of U . This means that the averaging partially truncates

oscillations and there will be some artifacts associated with this truncation.

The details of the td-DMRG simulations are given in their respective figure captions.

We note that td-DMRG has been applied to study the dynamics of different cold-atom

systems [114].

Figure 4.5 shows the results for U/t̄ = 2, N = 40, and Npσ = 20 for the three different

methods. They all agree qualitatively, giving rise to a quasi steady state. Keeping track

of the higher-order correlations significantly improves the accuracy of the simulation.

Furthermore, the results suggest that for small U/t̄ the transient time to reach a quasi

steady state is only a few t0 while the duration of the QSSC can extend much longer.

Thus for reasonably large lattices, the observation of an interaction-induced QSSC and

the conducting-nonconducting transition is feasible.
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Figure 4.5: Current versus time for varying levels of approximation. The mean-
field approximation (dashed line), the higher-order approximation including
two-particle correlations (dash-dot), and td-DMRG (solid line) are shown for
U/t̄ = 2. Here N = 40 and Npσ = 20. For td-DMRG, we did a series of simula-
tions using matrix-product state (MPS) dimensions 500, 2000, and 3000. The

td-DMRG results shown are converged.

Figure 4.6 shows the average current versus U . We note that inclusion of higher order

correlations limits our analysis to shorter times than above. This means that the aver-

aging partially truncates oscillations and the effect of this partial truncation is to give

a finite value to 〈Iσ〉 even when a longer average would give zero. This will be more

prominent for shorter averages, i.e., in the absence of transient effects, one expects that

the truncation will give a residual contribution of 〈Iσ〉 ∝ 1/U , as U gives the frequency

scale of oscillations (for large U). The inset of Figure 4.6 gives this tail: for filling

greater than 1/2, the average current is consistent with this interpretation. For filling

equal to 1/2, the results are ambiguous. Most importantly, all methods clearly display

the negative differential conductance, and, thus, this phenomenon should be observable

in experiments.

If the initial state is not far from a band-insulator (see the cases with N = 40 and Npσ =

30, 35), the td-DMRG simulations show a conducting-nonconducting transition for large

U . Thus this dynamically generated conducting-nonconducting transition should be

observable in experiments. For the half-filling initial state, a current carrying state is

observed within our simulation range, but the magnitude of the current in this state is

decreasing as U is increased as happened with the higher order correlation case.
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Figure 4.6: Average current versus U . (a) 〈Iσ〉 of the fermionic case with N = 64
and Npσ = 32, 48, 56, 60 (labeled next to each curve) from the simulations with
two-particle correlations. The averaged current is computed from t = 0 to
t = 2.5t0. The inset of the plot shows the average current plotted on a log scale,
which shows that it does indeed vary as 1/Uα where α tends towards 1 as the
filling increases (α ≈ 2.95, 1.59, 1.43, 1.29 for Npσ = 32, 48, 56, 60 respectively).
(b) 〈Iσ〉 of the fermionic case with N = 40 and Npσ = 15, 20, 30, 35 (labeled
next to each curve) from td-DMRG with MPS dimension 500. Simulations with
higher MPS dimension indicate that these are accurate to within about 5%. The
averaged current is computed from t = 5.0t0 to t = 10.0t0. Similar to Figure 4.3,
the average current initially increases with U and then decreases, thus giving
negative differential conductance. The td-DMRG simulations indicate that a
conducting-nonconducting transition can exist for large U for fillings larger than

half filling.

4.5 Conclusion

In summary, we have shown that one may use time-dependent inhomogeneous inter-

actions of ultra-cold atoms to explore non-equilibrium physics not easily realizable in

conventional solid-state setups. For weak-interactions, the response of the system is sim-

ilar to condensed matter systems where a bias is applied. This response is robust against

possible transient behavior of the driving force. The application of inhomogeneous in-

teractions gives rise to negative differential conductance, which is a many-body, atomic

analog of this phenomenon in solid-state systems. Furthermore, a dynamically gener-

ated conducting-nonconducting transition is predicted from different simulations and

its observation in experiments could provide another example of nonequilibrium phase
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transitions. Our work sheds light on the physics of complex systems out of equilibrium

and may help in the design of devices in the thriving field of atomtronics [115].
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Chapter 5: Landauer’s Formula with Finite-Time Relaxation

The previous two Chapters examined transport in a closed-system configuration: a

system initially starts in some ground state and then is perturbed and the dynamics are

examined. In this Chapter, we shift our focus to examining transport in the context

of a larger system, by including electronic reservoirs. These reservoirs act as electron

sources and sinks and seek to establish a steady-state current across a region between

them. We calculate the steady-state current when relaxation of electrons is present.

We also demonstrate that a simple equation of motion emerges, which is suitable for

efficiently simulating time-dependent transport. The work in this chapter was authored

in collaboration with Kirill A Velizhanin and was published in Ref. [51].

5.1 Introduction

The prototypical example of electron transport in nano- and meso-scale junctions is a

small conducting region connected to two electron reservoirs. When the confinement

in this region is strong, the rigorous treatment of quantum effects becomes crucial.

The Landauer formalism [54, 55] is a well-known method for describing these systems,

which is based on an energy-dependent transmission probability for the region of inter-

est. This method has been successfully applied to ballistic transport [116], quantized

conductance [117, 118], quantum point contacts [119], cold-atom systems [29, 86], and
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broadly in the area of nanoscale electronics [55, 120, 121]. However, the viewpoint on

which the Landauer formula is based neglects the effect of relaxation mechanisms, the

dynamics of the region of interest, and many-body interactions. Put differently, the

text-book Landauer approach [55, 122, 123] implicitly assumes that deviation from the

equilibrium distribution in the external reservoirs is negligible. Moreover, the relaxation

of the electrons in the junction region is only due to the contact with the electrodes.

When the timescale for relaxation at the electrodes is comparable to that in the junction,

the physical behavior cannot be captured by the Landauer formalism.

An alternative method to calculate the transport properties is to work with a closed

system and explicitly solve for the dynamics [55, 105, 110, 124]. This approach has

been applied to study molecular conductance [125, 126] and induced cold atom trans-

port [50, 85, 86], where the latter closely approximates a closed system, giving an ideal

application of this approach. The limitation of this method, however, is that the recur-

rence time is proportional to the total system size, meaning that a large—and computa-

tionally expensive—reservoir is needed to fully eliminate transient effects and to examine

dynamical perturbations on top of an otherwise steady-state current. This is not feasible

in most situations, especially if one is interested in complex, time-dependent many-body

systems or the effect of relaxation (which would require the explicit incorporation of

additional degrees of freedom such as phonons).

Transport in time-dependent structures, however, has emerged at the forefront of appli-

cations. Electronic sequencing [127–134] (via tunneling current through base pairs) and

sensing [135–142] (e.g., protein fluctuations on/nearby carbon nanotube and graphene

devices), in particular, require a rigorous treatment of the interplay between transport

and changes of the junction or molecular structure. In other words, if the local relaxation

of electrons near the junction is slower or on the same timescale as the changes in the

junction (typically picoseconds) the interaction between these two processes can dramat-

ically influence transport. Practical real-time approaches to transport that are naturally

suited to these systems are therefore necessary. The formalism introduced by Jauho,

Meir and Wingreen [58, 143, 144] (which has been used to describe the conduction in a
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Figure 5.1: Schematic representation of the model. (a) System-reservoir-
environment model, with yellow and blue representing the junction region (e.g.,
two leads connected by a junction)—the system of interest S—and L (R) in-
dicating the extended reservoirs. The presence of electron sources, sinks, and
interactions (electron-electron, electron-phonon, etc.), here subsumed into the
environments EL(R), causes the reservoirs to relax toward their respective equi-
librium distributions, which, when an external bias is applied, will be at different
chemical potentials. (b) Each reservoir state exchanges electrons with an en-
vironment (i.e., an external reservoir at some chemical potential), which gives
rise to a non-zero relaxation rate γ. The imbalance of occupied states will drive
a current through S, where explicit (or implicit) relaxation mechanisms may or

may not be present.

variety of systems, such as quantum dots [145–147], and layered semiconductors [148–

150]) provides an exact formal solution to the time evolution, but involves two-time

Green’s functions, making its use prohibitive in many applications. In this chapter,

we show that in the absence of time dependence, one can recover the Landauer view

with reasonably sized “extended reservoirs” and weak relaxation. The incorporation of

explicit but finite reservoirs, however, also allows for one to examine the competition

between time-dependence of the junction and the relaxation rate of the reservoir region.

In transport, external sources and sinks of electrons, together with electron-electron,

electron-phonon, etc., interactions, maintain a potential difference across two large re-

gions, which we call extended reservoirs. We develop an open system approach to

transport that includes a finite electron lifetime representing the presence of these re-

laxation mechanisms. In particular, the extended reservoirs consist of a set of states
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whose occupation is pushed towards equilibrium by the exchange of electrons with im-

plicit reservoirs (the environment E) at different chemical potentials. When a finite

system is placed between them, an electric current will be driven across it. We derive

a Landauer-like formula for this scenario and demonstrate that a finite relaxation time

in the extended reservoirs gives rise to three distinct regimes of behavior, analogous to

Kramers’ turnover for chemical reactions [151]. A methodology similar to that below—

one based on the concept of “extended reservoirs”—was proposed and developed for

classical thermal transport [152, 153], where a corresponding crossover effect occurs (see

also Ref. [154]).

5.2 Model

The Hamiltonian is H = HL + HR + HS + HI , where the explicit degrees of freedom

are divided into three parts: the left extended reservoir (L), the right extended reservoir

(R), and the system of interest (S). The extended reservoir regions have a finite electron

lifetime that pushes them towards equilibrium by allowing for the exchange of electrons

with the external degrees of freedom in the implicit reservoir.1 In other words, L and

R are open to some larger environment E (shown as EL and ER in Fig. 5.1), where the

latter will be composed of degrees of freedom that are treated implicitly. Finally, HI

describes the interaction between S and the left (L) and right (R) extended reservoirs.

Figure 5.1 shows a schematic of this setup.

The left and right regions each contain Nr non-interacting electronic states with a Hamil-

tonian given by HL =
∑

k∈L εkc
†
kck and HR =

∑
k∈R εkc

†
kck, where k ∈ L,R indexes

the single particle states and c†k(ck) are their respective creation (annihilation) opera-

tors. The interaction Hamiltonian is described by HI =
∑

k∈L,R
∑

i∈S ~vkic
†
kci + h.c.,

where i ∈ S indexes the system states (with associated operators c†i , ci ). The vki are the

hopping rates between the reservoir and system states. The method we describe will be

1In some sense, we can say this is a grand canonical approach to transport when compared to the
microcanonical approach of Ref. [105].
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applicable to all dimensions, as this just changes the onsite energies in the Hamiltonian

and hopping rates to the extended reservoirs. The system Hamiltonian, HS , is arbitrary,

potentially including many-body or spin-dependent interactions, vibrational degrees of

freedom, etc.

In the absence of S, the extended reservoir states relax into their equilibrium occupa-

tions, i.e., their local density of electrons decays into a Fermi-Dirac distribution. The

rate at which this occurs, denoted by γ, is controlled by the coupling strength between

the reservoirs, L and R, and their environment, EL(R). Generically, γ captures the phys-

ical interaction with the environment that relax the reservoirs into equilibrium.2 A lower

bound on γ−1 can be estimated by the mean scattering time in the material, which is

typically on the order of 1 fs to 10 fs for metals. However, γ is the relaxation rate to

reach equilibrium, which can be much weaker (especially for, e.g., local disturbances to

dissipate in confined geometries, at low temperature, or in the presence of weak electron-

phonon interaction). Physically, each reservoir state is exchanging electrons with a larger

external reservoir (EL(R)) with an applied bias of VL(R) and an infinite extent. The total

externally applied bias is V = VL − VR, where we here take V to be in units of energy.

The general solution for the steady-states in this setup can be found by following the

approach of Jauho, Meir, and Wingreen [144], where the reservoirs are taken to be

infinite with a well-defined occupation and no relaxation. Indeed, when the whole L −
S − R system is treated as some larger system S ′, the steady state is just the Meir-

Wingreen solution, albeit with an unmanageably large number of degrees of freedom.

Here, however, we are interested in calculating the transport properties of S by itself,

i.e., to what extent can the extended reservoirs L and R—finite in extent but with

relaxation—capture the effect of infinite reservoirs in the normal approaches. As well,

we want to determine what parameter ranges (e.g., realistic values of γ) are simulatable

via a Markovian master equation approach. To this end, we will start with the Green’s

functions for the extended reservoir states uncoupled from the system, but still including

2The relaxation rate can also be energy dependent and this will reflect both the geometry and
dimensionality of the whole setup. In this work, we take γ to be constant, independent of both k and L
or R, for simplicity. This is easily relaxed, however.
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a finite lifetime (note that, as we do in Sec. 6.1, one can start with all degrees of freedom

treated explicitly, including EL(R), see Eq. (6.1)). For the lesser Green’s function:

g<k (ω) =
ıγfL(R)(ω)

(ω − ωk)2 + γ2/4
, (5.1)

with ~ωk = εk and fL(R)(ω) = 1/(exp[β(~ω−VL(R))]+1) is the Fermi-Dirac distribution.

This expression is within the wide-band approximation, see Sec. 6.1 for the general case.

This leads to the single particle retarded and advanced Green’s functions

g
r(a)
k (t, t′) = ∓ıΘ(±t∓ t′)

〈
{c†k(t)ck(t′)}

〉
= ∓ıΘ(±t∓ t′)e−ıωk(t−t′)−γ|t′−t|/2 (5.2)

or g
r(a)
k (ω) = (ω−ωk± ıγ/2)−1 for the Fourier transform. The γ in both these equations

reflects the finite lifetime of electrons in the extended reservoir regions. Starting with this

broadened Green’s function for the individual reservoir state, the steady-state current is

I =
e

2π

∫ ∞

−∞
dω [fL(ω)− fR(ω)]× tr

[
ΓL(ω)Gr(ω)ΓR(ω)Ga(ω)

]
. (5.3)

The quantity Γij is the spectral density of the couplings between the system and the

extended reservoirs

Γ
L(R)
ij (ω) =

∑

k∈L(R)

vikvkj
γ

(ω − ωk)2 + γ2/4
, (5.4)

with i, j ∈ S. Gr(a)(ω) are the exact retarded and advanced Green’s functions for the

system only but in the presence of the left and right extended reservoirs and including

relaxation in the latter.

Equation (5.3) is similar to the traditional Landauer formula. However, the density of

states of a single extended reservoir state is broadened to a Lorentzian due to the inclu-

sion of a finite relaxation time. When no interactions are present, Eq. (5.3) can be inter-

preted in terms of a relaxation-dependent transmission coefficient, Tγ = tr[ΓLGrΓRGa].



88

This relaxation gives rise to different physical regimes of behavior and also an effec-

tive equation of motion that can be used to examine transport in more complex time-

dependent scenarios. We first describe the different regimes of behavior for an example

system.

5.3 Results

When the reservoir states are symmetrically coupled to the system, i.e., when the distri-

bution of energies εk and couplings vki are the same for each k ∈ L and its corresponding

k ∈ R, the spectral density, Eq. (5.4), is proportional to the imaginary part of the inverse

of Gr(a)(ω). This results in a simplified expression for the current,

I = − eγ
2π

∑

k∈L

∑

i,j∈S
vikvkj ×

∫ ∞

−∞
dω

[fL(ω)− fR(ω)]

(ω − ωk)2 + γ2/4
Im[Gr

ij(ω)]. (5.5)

In the example below, we make use of this simplified expression.

5.3.1 Single-Site Homogeneous System

Equation (5.3) is valid for any system—including those with many-body interactions—

with a finite relaxation time. In what follows, however, we will focus on a homogeneous

system in which the combined L − S − R system is a 1D lattice with hopping rate J :

H =
∑

n∈L,R,S ~J(c†ncn+1 + h.c.). The quantity J sets the frequency scale, where the

bandwidth W = 4J . Note that in this example, the total coupling to the system and

the bandwidth are both determined by J . Typically, J−1 is in the range 0.1 fs to 1 fs

for conducting materials. We choose to work with hopping rates rather than energies as

this gives more transparent expressions.
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Figure 5.2: Regimes of the electronic current. The steady-state current,
Eq. (5.5) (or Eq. (5.3)), of the single-state system connected to two 1D ex-
tended reservoirs of size Nr = 64. The potential difference is V = 0.5J~ and
the temperature is given by β = 40(J~)−1. The dashed lines show the approx-
imations in the small and large γ regimes, and the dotted line is the Landauer
calculation of the closed system, S, with infinite L and R without relaxation.
The small γ regime has a current increasing linearly with γ, as it dominates the
rate at which electrons flow through the whole setup. In the large γ regime, the
fast relaxation localizes electrons in the extended reservoir, causing the current
to decay as 1/γ. In the intermediate relaxation regime, the current matches

that from a Landauer calculation.

The extended reservoir portion of H can be directly diagonalized via a sine transforma-

tion.3 That is, given k ∈ {1, . . . , Nr}, ωk = −W/2 cos[kπ/(Nr + 1)]. We can express the

couplings with a single index, vk for k ∈ L,R (instead of vki). Using this notation, the

couplings are

vk = J
√

2/(Nr + 1) sin[kπ/(Nr + 1)]. (5.6)

Again, in this special case of a uniform 1D lattice, J sets the hopping rate in both the

extended reservoir region and between the system and extended reservoirs. Additionally,

we will take the system to be a single site with no onsite energy so that Gr(a)(ω) =

1/
(
ω − 2

∑
k v

2
kg
r(a)
k (ω)

)
, where the sum over k is in either L or R (the factor of 2

reflects the symmetry of the setup).

3The transformation U is applied to the subset of states in the reservoirs, and so the couplings to S
are determined by its matrix elements.
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Figure 5.2 shows the calculation of the current I from Eq. (5.5) (or Eq. (5.3)) as a

function of the relaxation rate γ for a reservoir size Nr = 64. There are three regimes

visible: (1) a small γ regime with current I1, (2) an intermediate regime with I2, and

(3) a large γ regime with I3. We first discuss the intermediate regime.

5.3.2 Intermediate Relaxation

Figure 5.2 shows that there is an intermediate range of γ for which the current is

approximately flat. That is, in this crossover region between small and large values

of γ, a plateau forms and subsequently elongates as the size of the extended reser-

voir increases (see Fig. 5.3). The current in this regime is the same as that pre-

dicted by a Landauer calculation for S alone. That calculation gives the current as

I2 = e/(2π)
∫W/2
−W/2 dω [fL(ω)− fR(ω)]T (ω). In linear response, this yields

I2 ≈ eV T (ωF )/(2π~), (5.7)

where ~ωF is the Fermi level. In this example, the transmission coefficient at the Fermi

level is T (ωF ) = 1 and the plateau comes at the quantum of conductance, I2(β � J~) ≈
eV/(2π~) (the transmission coefficient through part of a homogeneous lattice is unity,

T (ω) = 1, for all frequencies).4

Perfect transmission at the Fermi level (T (ωF ) = 1) remains even if the hopping rate

from the extended reservoir into the system is different (i.e., even if we have an inho-

mogeneity of the hopping rates at the interface to the system). In other systems, or in

nonlinear response, though, the current—i.e., the level of the plateau—will be a compli-

cated function of the total setup. As we discuss below, this will change when the current

transitions into the other two regimes.

4At high temperature the current is I2(β � J~) ≈ eJβV/(2π).
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Figure 5.3: Expansion of the plateau. The steady-state current as a function of
the relaxation rate γ for the Nr ∈ {32, 64, 128, 256, . . . } systems (dashed lines)
and the Nr → ∞ limit, I23 (solid line). The parameters of the system are the
same as in Fig. 5.2. In the limit that Nr → ∞ and then γ → 0, we recover
the standard Landauer current. The vertical dotted line demarcates the regions
where the Markovian master equation is valid and not valid. Since the size
of the plateau grows linearly with Nr, the plateau will eventually extend into
the region where the Markovian equation is valid, allowing for transport in this
intermediate plateau regime to be simulated with the much simpler Markovian

approach.

5.3.3 Small Relaxation

Figure 5.2 shows that the current increases linearly with γ when it is small. In this

regime, electrons move from the left extended reservoir into the system much faster

than the implicit reservoirs replenish the electrons in L (and similarly for R). The rate

of the replenishment is the relaxation rate γ, as this determines how fast the states

return back to their equilibrium occupation. Thus, when γ is small, electrons cannot be

restored rapidly enough and this rate becomes the bottleneck for the current, and hence

the current is essentially dependent only on γ.

When the system is noninteracting and γ is much less than the state spacing (γ �
W/Nr), energy conservation guarantees that an electron coming out of state k (i.e., at

energy εk) on the left, must exit the system at the same energy on the right. This allows

the current to be broken into contributions from pairs of states, for which the pair can
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also be labeled by k in this symmetric setup. The current flowing into the left reservoir

state k from the environment EL is ILk = eγ(fLk − nLk ) and the current out of that state

into the system is ILSk = eσ(nLk − nS), where f
L(R)
k is the Fermi-Dirac distribution

evaluated at the reservoir state frequency fL(R)(ωk) and σ is the particle flow rate from

the reservoir state into the system. Similar rate equations hold on the right side. In the

steady state (Ik ≡ ILk = ILSk = . . .) and when γ � σ (i.e., the relaxation γ has to be weak

enough that electrons are injected into an extended reservoir state much more slowly

than they move into the system and are subsequently taken away from the interface

between the system and extended reservoir), these equations give Ik ≈ e(γ/2)(fLk −fRk ),

where γ/2 is the “reduced γ” (i.e., it reflects that there are two interfaces, one at the

left and one at the right. For different relaxation rates in L and R, the relevant quantity

would be γLγR/(γL + γR)). Summing over the contribution from all states k, the total

current in this regime is

I1 ≈ eγ/2
∑

k

(fLk − fRk ). (5.8)

The sum over k is over a single set of states in the left or right, which are identical in

the symmetric setup. Figure 5.2 plots Eq. (5.8) along with the full solution, showing

agreement for small γ.

Essentially, Eq. (5.8) is just eγ/2 times a particle bias: There are
∑

k(f
L
k − fRk ) open

channels in the bias window—where an electron can move from an occupied state k on

the left and go to an unoccupied state k on the right—and each contributes eγ/2 to the

current. We note that the physics of this regime is the same as that observed in weakly

coupled quantum dot systems, [155] in which case γ reflects a weak tunneling rate to

the external electrodes which limits how fast the dot at the boundary can equilibrate

with the electrode.

The transition from the small to intermediate regimes occurs when the current from

Eq. (5.8) intersects the plateau current, Eq. (5.7). We can approximate Eq. (5.8) by

eγ/2(V/~)Nr/W , where V/~ is the bias window in terms of frequency, W/Nr is the

frequency spacing of the reservoir states, and, thus (V/~)/(W/Nr) gives the number of
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states in the bias window.5 The γ at which the transition occurs, which we will denote

by γ12, is

γ12 ≈W/(πNr). (5.9)

This value decreases inversely with Nr. Indeed, as seen in Fig. 5.3, this is responsible

for the increasing size of the plateau region, as the transition to the large γ region is

independent of Nr (which we will see below).

We note that this transition γ is equivalent to the condition necessary to be in the small

gamma regime, γ �W/Nr. In more complex systems, or even just in nonlinear response,

the transition γ can be dependent on many other factors besides just the mode spacing,

such as the hopping rate to the system, the bias, etc. In other words, the transition

from small to intermediate γ depends on the details of the setup.

5.3.4 Large Relaxation

When γ becomes large, Fig. 5.2 shows that the current “turns over” and starts to decay

as 1/γ. The strong relaxation (i.e., the fast relaxation rate) in this regime is effectively

localizing electrons in the extended reservoir region. For currents to flow, electrons must

remain coherent between the extended reservoir and the system. The relaxation limits

this coherence to a time ≈ 1/γ and therefore the current is suppressed by this factor.

Alternatively, this can be seen by starting with Eq. (5.5). There, the Lorentzian is

approximately constant (1/γ) in the relevant region of integration and the Green’s func-

tions for the reservoir states, g
r(a)
k , are purely imaginary. The density of states, Im[Gr],

is dominated by the contribution from the system in this example (see Sec. 5.3.4 for

more details). In linear response, this gives

I3 ≈
e

2π

(
4πJ2

γ

)
, (5.10)

5Note that Nr should also be sufficiently large so that a significant number of states are within the
bias window.
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so long as V 6= 0. That is, the strong relaxation renormalizes the coupling to J2/γ and,

thus, the total electron flow through S is limited by this factor.6 This also shows that

the current in the large γ regime is independent of Nr, with the exception of potential

discretization effects (when Nr is very small) that can cause mismatches in energy, and

that the current is independent of the bias in this regime for the particular example we

discuss.

Just as with the small γ regime, we can find the transition into the large γ regime. This

occurs at γ23 ≈ 4πJ2~/V , where we have denoted the transition γ as γ23. Thus, while

the behavior of the current in the large γ regime is independent of bias, the transition

to this regime is dependent on the bias—decreasing the bias makes this transition occur

at increasingly large values of γ.

We note that, unlike γ12 and γ23, how the small and large γ behavior varies with γ is

generally independent of the form of the system and the reservoir dispersion relation,

but rather only depends on characteristic quantities such as the total coupling strength

(between the system and extended reservoir) and relaxation rate.

5.3.5 Reservoir Continuum Limit

The Nr →∞ limit can be taken in Eq. (5.3) to regain a macroscopic electron reservoir,

but with a finite relaxation time. In our example setup, the extended reservoirs become

semi-infinite 1D lattices on each side. For this case, we can find the self-energy through

either a recursion relation [86, 87] or by integrating the states directly:

Σr(a)(ω) =
∑

k

v2
k

ω − ωk ± ıγ/2
→
∫
v(ω′)2D(ω′)dω′

ω − ω′ ± ıγ/2 , (5.11)

6This expression depends on the hopping rate to the system rather than the hopping rate in the
extended reservoirs. As we show in Sec. 6.2.3, the current is related to the difference in real space
occupation of the sites immediately adjacent to S for the Markovian approach discussed below.
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with D(ω′) = dk/dωk|ωk=ω′ . This expression gives a self-energy

Σr(a)(ω) =
8J2

W 2

(
ω ∓ ıγ

2
− ı
√
W 2

4
−
(
ω ∓ ıγ

2

)2
)
. (5.12)

Using this in Eq. (5.3) or Eq. (5.5) (with Γ = 2 Im Σ) provides a semi-analytic expres-

sion for the exact current through the system in the infinite Nr limit, denoted by I23.

Figure 5.3 shows this quantity together with the solution for several finite Nr reservoirs.7

These show that as Nr increases the plateau will continually grow and, when Nr →∞,

the small γ regime will be eliminated entirely.

The results above are for steady-state currents, which can be calculated from exact

treatment of the L − S − R system. However, this neglects time-dependent effects

present in S. As we show in Sec. 6.2.3, Eq. (5.3) also describes the steady-state solution

of the Markovian master equation (see also Eq. (2.22) from Sec. 2.3.1)

ρ̇ = − ı
~

[H, ρ]+
∑

k

γk+

(
c†kρck −

1

2

{
ckc
†
k, ρ
})

+
∑

k

γk−

(
ckρc

†
k −

1

2

{
c†kck, ρ

})
(5.13)

in the small γ regime and in part of the intermediate plateau region (so long as Nr is

sufficiently large, see Fig. 5.3). This type of equation has been applied previously [46,

156–158]. It is often taken as a phenomenological equation for all regimes of γ, not as a

weak-coupling approximation to a memory-less reservoir [42]. Our complete solution to

both the full model (for all γ) and its Markovian counterpart enables us to put rigorous

bounds on the latter’s validity, which we will now discuss.

In Eq. (5.13), the terms γk+ = γfαk and γk− = γ(1 − fαk ), where α = L(R) when

k ∈ L(R), relax the extended reservoirs into an equilibrium defined by their isolated

Hamiltonian when HI is absent. That is, unlike the setup described above, this equi-

librium is for the extended reservoir states at fixed energy ~ωk. This coincides with the

concept of equilibrium above only when the broadening is sufficiently small. Larger γ,

therefore, can give rise to unphysical behavior, such as residual currents at zero bias

7In addition, the Nr →∞ result can be expanded for small γ, yielding the lowest order contribution
to the current as given by Landauer, I23 ≈ I2 +O(γ2).
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(see Sec. 6.3). In particular, the relaxation in the extended reservoirs must be smaller

than the thermal relaxation, γ � 1/β~ (or, in terms of timescales, γ−1 � 25 fs at

room temperature), otherwise electron occupation can be smeared well above the Fermi

level. As well, if one has asymmetric L and R extended reservoirs—with the asymmetry

characterized by an energy offset δ—one needs γ �W 3V/δJ2~. Taking γ and Nr such

that the current is on the plateau, γ ≈ W/Nr, gives a requirement on the extended

reservoir size, Nr � δ/V , when δ is finite.8 This less strict condition (when compared

to γ � 1/β~) guarantees that superfluous currents will be negligible compared to the ac-

tual current at finite bias. Within these regimes, the Markovian master equation allows

for the calculation of the full time dynamics. This formalism allows for the simulation

of time-dependent effects or interactions and, notably, does so without the use of two-

time Green’s functions or the use of memory kernels, which both drastically increase the

complexity of the simulations.

5.4 Conclusion

In summary, we developed the concept of extended reservoirs to examine the effect of

relaxation on transport and the validity of a Markovian master equation approach. In

addition to providing the full, exact solution to both the Markovian and non-Markovian

cases, we showed that the current displays a crossover behavior as the relaxation rate is

varied, with a weak coupling limit proportional to γ and a strong coupling limit propor-

tional to 1/γ. These two regimes are “relaxation” dominated. The Landauer regime can

be simulated through the use of a finite number of reservoir states and controlling the

relaxation rate to be between these two regimes. The physical behavior in the presence

of a finite reservoir is analogous to Kramers’ problem and thermal transport [152].

This approach naturally leads to the Markovian master equation, Eq. (5.13), for small-to-

intermediate γ, which gives a suitable starting point for studying the real-time behavior

8Without an asymmetry, the anomalous current from the left reservoir to the right is canceled by the
anomalous current from right to left.
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of the current where the junction region is time-dependent. This formalism allows the

electronic reservoirs to respond to dynamical components of the system (such as struc-

tural and energetic fluctuations) and relax back to equilibrium at a finite rate. The

method, therefore, can be applied to help understand the role of fluctuations in deter-

mining transport properties, to assess the effectiveness of electronic sensing in aqueous

solution, and to give a unified approach to simulating nanoscale devices out of equilib-

rium.
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Chapter 6: Derivations and Analysis of Finite-Time Relaxation

Chapter 5 focused primarily in the physical consequences of a finite relaxation time

and the associated electronic current. In this Chapter, we take an in-depth look at the

mathematical derivation of the equations used, following the first principles derivations

from the explicit forms of the Green’s functions. We also examine the consequences of

using the master equation, Eq. (5.13), as the basis for numerical calculations without

regard to the regimes of validity.

6.1 Steady-State Current Derivations

The expressions from the previous chapter are based on a derivation of the steady-state

current using the equilibrium condition of a single extended reservoir site. What follows

in this section is a more complete derivation of the steady-state current.

6.1.1 Single Extended Reservoir State Green’s Function

Let us a consider a single electronic level of energy ~ωk connected to a manifold of

non-interacting states that comprise the implicit reservoir Ek. The index k denotes the

extended reservoir state that these states are coupled to. The EL(R) from earlier are
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composed of all Ek for k ∈ L(R). The Hamiltonian of this partial system is

Hk = ~ωkc†kck +
∑

α∈Ek

~ωαc†αcα +
∑

α∈Ek

~tα
(
c†αck + c†kcα

)
. (6.1)

This Hamiltonian describes the systems shown in Fig. 5.1(b) above. For an implicit

reservoir state α, the isolated Green’s functions are

g>α (t, t′) = −ı[1− f(ωα)]e−ıωα(t−t′)−η|t−t′|, (6.2)

g<α (t, t′) = ıf(ωα)e−ıωα(t−t′)−η|t−t′|, (6.3)

grα(t, t′) = θ(t− t′)
[
g>(t, t′)− g<(t, t′)

]
, (6.4)

and

gaα(t, t′) = −θ(t′ − t)
[
g>(t, t′)− g<(t, t′)

]
; (6.5)

or, in terms of their Fourier transforms,

g>α (ω) = −2πı[1− f(ωα)]δ(ω − ωα), (6.6)

g<α (ω) = 2πıf(ωα)δ(ω − ωα), (6.7)

grα(ω) = 1/(ω − ωα + ıη), (6.8)

and

gaα(ω) = 1/(ω − ωα − ıη), (6.9)

where η is the infinitesimal positive number and f(ω) is the Fermi-Dirac distribution.

The subscript α on gα is used to distinguish it from an extended reservoir state Green’s

functions (gk) or the full system Green’s functions (Gij) as used for the L − S − R
system. For the interaction of one level with all the other levels, Eq. (6.1), we have

(symbolically, on the Keldysh contour) gk = g0k + g0kΣkgk, with g0k being the single
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isolated extended reservoir site. Using the relation between on-contour and real-time

non-equilibrium Green’s functions [58], for the retarded Green’s function we have

grk(ω) = gr0k(ω) + gr0k(ω)Σr
k(ω)grk(ω), (6.10)

where

Σr
k(ω) =

∑

α∈Ek

t2αg
r
α(ω) =

1

2π

∫
dω′

γ(ω′)

ω − ω′ + ıη
. (6.11)

Here, γ(ω) = 2π
∑

α t
2
αδ(ω − ωα). Evaluating the integral, one obtains

Σr
k(ω) =

1

2π
P
∫
dω′

γ(ω′)

ω − ω′ −
ıγ(ω)

2
= Ek(ω)− ıγ(ω)

2
, (6.12)

where Ek(ω) is a frequency-dependent energy shift and γ(ω) is a frequency-dependent

relaxation rate. Similarly, the lesser self-energy is evaluated as

Σ<
k (ω) =

∑

α∈Ek

t2αg
<
α (ω) = ıγ(ω)f(ω). (6.13)

The retarded Green’s function of the extended reservoir site then becomes

grk(ω) =
1

ω − [ωk + Ek(ω)] + ıγ(ω)/2
. (6.14)

As is seen, “friction” is in general non-Markovian, since the dephasing rate γ(ω) is

frequency-dependent. The frequency shift, Ek(ω), is also non-Markovian in the same

sense. Now let us find the the full lesser Green’s function. To this end we will use the

Keldysh equation [58, 144]

g<k (ω) = grk(ω)Σ<
k (ω)gak(ω), (6.15)

resulting in

g<k (ω) =
ıγ(ω)f(ω)

(ω − ωk − Ek(ω))2 + γ2(ω)/4
. (6.16)
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The important fact here is that the Fermi-Dirac distribution here is not evaluated at ωk

or at any other fixed frequency. Instead, it is evaluated at ω and, therefore, this factor

is the same (at fixed ω) for any Green’s function of any site within the same reservoir.

In particular, it guarantees that the current vanishes when the Fermi-Dirac distribution

is the same for the two extended reservoirs.

The often used wide band approximation would result in ω-independent γ and vanishing

Ek. In this approximation, the result for the lesser Green’s function is

g<k (ω) =
ıγf(ω)

(ω − ωk)2 + γ2/4
. (6.17)

In a similar manner, the retarded Green’s function is

grk(ω) =
1

ω − ωk + ıγ/2
. (6.18)

Accordingly, one has, using the identity grk(ω) = [gak(ω)]∗,

g<k (ω) = −f(ω) [grk(ω)− gak(ω)] . (6.19)

6.1.2 Landauer-like Formula

We are following a notation similar to the original Meir-Wingreen paper [143]. The

Hamiltonian of the system is

H =
∑

k∈L,R
εkc
†
kck +

∑

k∈L,R

∑

i∈S
~
(
vkic

†
kci + vikc

†
ick

)
+HS , (6.20)

with εk = ~ωk. Unlike the Meir-Wingreen scenario where such a Hamiltonian fully

describes the steady-state since the sizes of left and right reservoirs are assumed to be

infinite, here we take a finite number of extended reservoir states, but each such site k

is connected to an implicit reservoir according to the Hamiltonian (6.1).
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The time-dependent current from the left reservoir to the system can be written as [143]

I(t) = e
∑

k∈L

∑

j∈S

[
vkjG

<
jk(t, t)− vjkG<

kj(t, t)
]
. (6.21)

When the steady state is established, we can take the Fourier transform,

I = e
∑

k∈L

∑

j∈S

∫
dω

2π

[
vkjG

<
jk(ω)− vjkG<

kj(ω)
]
. (6.22)

Since the reservoir sites are non-interacting (in a two- or more-electron sense) we have

the following Dyson equation [144]

G<kj(ω) =
∑

i∈S
vki

[
grk(ω)G<

ij(ω) + g<k (ω)Ga
ij(ω)

]
, (6.23)

or equivalently

G<ik(ω) =
∑

j∈qs
vjk

[
Gr
ij(ω)g<k (ω) + G<

ij(ω)gak(ω)
]
. (6.24)

Using these identities, Eq. (6.22) can be rewritten as

I = e
∑

k∈L

∑

i,j∈S

∫
dω

2π
vkivjk

{
g<k (ω)

[
Gr
ij(ω)−Ga

ij(ω)
]
− [grk(ω)− gak(ω)] G<

ij(ω)
}
.

(6.25)

We emphasize that even though gk(ω) are single-particle non-interacting Green’s func-

tions, the corresponding quasiparticles do have finite lifetime because of their coupling to

the implicit reservoirs, which is different from the original Meir-Wingreen formulation.

For example, g≷k (ω) are not delta functions with respect to ω, but rather Lorentzians

(when the wide band limit is taken, Eq. (6.17)).

To proceed further we use (i) the Keldysh equation [58, 144], G≷ = GrΣ≷Ga, and (ii)

that the self-energy due to the interaction with reservoir sites is Σ
r(a)
ij =

∑
k vikvkjg

r(a)
k ,

and (iii) the linear relation between real-time Green’s functions G>−G< = Gr−Ga [58].
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Using these identities the current can be rewritten as

I = e
∑

i,j∈S

∑

α,β∈S

∑

k∈L

∑

l∈L,R

∫
dω

2π
vkivjkvαlvlβG

r
iα(ω)Ga

βj(ω) (6.26)

×
{
g<k (ω) [grl (ω)− gal (ω)]− [grk(ω)− gak(ω)] g<l (ω)

}
.

Considering the equilibrium property of the isolated state k, Eq. (6.19), one gets

I = −e
∑

i,j∈S

∑

α,β∈S

∑

k∈L

∑

l∈R

∫
dω

2π
vkivjkvαlvlβG

r
iα(ω)Ga

βj(ω) (6.27)

× [grl (ω)− gal (ω)] [grk(ω)− gak(ω)] {fL(ω)− fR(ω)} .

It is clearly seen that once the Fermi-Dirac distribution becomes identical on the left

and on the right, the current vanishes. Actually, any partial current also vanishes, i.e.,

the current for a specific choice of indices m,n, α, β, k, l and frequency ω, as of course is

expected due to the necessary detailed balance at equilibrium.

A concise expression for the current can be written by introducing the spectral density

Γ
L(R)
ji (ω) = ı

∑

k∈L(R)

vjkvki [grk(ω)− gak(ω)] , (6.28)

and the expression for the current becomes

I =
e

2π

∑

i,j,α,β∈S

∫ ∞

−∞
dω [fL(ω)− fR(ω)]× ΓLij(ω)Gr

jα(ω)ΓRαβ(ω)Ga
βi(ω). (6.29)

Using the matrix notation,

I =
e

2π

∫ ∞

−∞
dω [fL(ω)− fR(ω)]× tr

[
ΓL(ω)Gr(ω)ΓR(ω)Ga(ω)

]
. (6.30)

This expression is Eq. (5.3) from Sec. 5.2.
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6.1.3 Small Relaxation, Continuum Limit

As an example, we examine a system that is a single noninteracting state. In this case,

the continuous form for the extended reservoir self-energy from integrating the single

site Green’s functions, Eq. (5.12) from Sec. 5.3.5, is

Σr(a)(ω) =
(
ω ∓ ıγ/2− ı

√
4J2 − (ω ∓ ıγ/2)2

)
/2, (6.31)

when W = 4J , and can be broken into the real and imaginary components

Re Σr(ω) =
1

4

[
8
(
ω2 + 4J2

)
γ2 + 16

(
ω2 − 4J2

)2
+ ω4

] 1
4

× sin

[
1

2
tan−1

( −4ωγ

−4ω2 + γ2 + 16J2

)]
+
ω

2
(6.32)

Im Σr(ω) =− 1

2

[(
ω2 − γ2

4
− 4J2

)2

+ ω2γ2

] 1
4

× cos

[
1

2
tan−1

( −4ωγ

−4ω2 + γ2 + 16J2

)]
− γ

4
. (6.33)

The term in the integral of Eq. (6.30) can then be written in terms of these components,

and then expanded in γ and ω. Since both γ and ω appear as the same order in the

expansion and the self-energy is small outside the band edge, the error in the ω integral

is small when γ is small. In practice, the bias is typically also taken to be small. For a

single central site,

Tγ(ω) = tr
[
ΓL(ω)Gr(ω)ΓR(ω)Ga(ω)

]
(6.34)

=
(2 Im Σr(ω))2

(ω − 2 Re Σr(ω))2 + (2 Im Σr(ω))2
≈ 1− ω2γ2

64J4
.

The first term is the transmission coefficient for a 1D lattice in the Landauer formula,

so the correction is of order γ2.
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6.1.4 Large Relaxation

As γ increases, the Green’s function for a single reservoir site, Eq. (6.18), approaches

grk(ω) = −2/γ in the relevant region of integration (i.e., where the difference in Fermi

distributions is non-negligible). The transmission coefficient in that region, then, is

Tγ(ω) ≈ −4

γ

∑

k

v2
k Im[Gr(ω)]. (6.35)

Using the explicit form for the total Green’s function, with S consisting of a single

non-interacting state with frequency ωs, this simplifies to

Tγ(ω) ≈ 4

γ

∑

k

v2
k

(
4
∑

k v
2
k/γ

(ω − ωs)2 + (4
∑

k v
2
k/γ)2

)
=

1

γ

(
1/γ

(ω − ωs)2/(4J2)2 + (1/γ)2

)

≈ π

γ
δ

(
ω − ωs

4J2

)
=

4πJ2

γ
δ(ω − ωs), (6.36)

where we used that
∑

k v
2
k = J2 since the couplings vk come from a unitary transforma-

tion times the total coupling to the system. When the bias window includes this peak

and at zero temperature, the current in the large γ regime becomes

I3 ≈
2eJ2

γ
. (6.37)

This expression is independent of the bias, as long as it is nonzero. As we noted earlier,

the transition to this value of the current, though, does depend on the bias.

6.2 Markovian Master Equation

Above, we derived a Landauer formula for the L − S − R system, which results in a

Markovian master equation for the real-time dynamics in the small-to-intermediate γ

regime. As we show below, outside of this regime this formalism gives physically invalid

results. In the appropriate region, though, it allows the direct calculation of the full



106

time dynamics and can be readily expanded to include many-body interactions or time-

dependent terms. Here we will derive the full solution—in all regimes—to the Markovian

master equation. Given the Hamiltonian

H =
∑

k∈L,R
εkc
†
kck +

∑

k∈L,R

∑

i∈S
~
(
vkic

†
kci + vikc

†
ick

)
+HS , (6.38)

the starting point is the Markovian master equation,

ρ̇ = − ı
~

[H, ρ] +
∑

k

γk+

(
c†kρck −

1

2

{
ckc
†
k, ρ
})

+
∑

k

γk−

(
ckρc

†
k −

1

2

{
c†kck, ρ

})
,

(6.39)

with γk+ = γfαk and γk− = γ(1 − fαk ), where α = L(R) when k ∈ L(R), and f
L(R)
k =

1/(exp[β(εk − VL(R))] + 1) is the Fermi-Dirac distribution. The total applied bias is

V = VL − VR. This form for γk+ and γk− ensures that in the absence of the interaction

HI , the extended reservoirs will relax into an independent equilibrium of their own

Hamiltonians, HL and HR. For simplicity, we have assumed that γ is the same in both

the left and right regions, and for all k.

This master equation describes the evolution of a system in the presence of explicit

reservoir states, with a different mechanism than used previously. The following will

examine the behavior of Eq. (6.39) over the full range of the relaxation γ.

6.2.1 Single Extended Reservoir State Green’s Function

In the absence of S, the extended reservoir states decay into the equilibrium state,

exp(−βHL(R))/Z, i.e., the occupations decay to a Fermi-Dirac distribution as e−γt/2.

This can be shown from the exact time-dependent lesser Green’s function in a reservoir

site uncoupled from S, which is given by

g<k (0, t) = ı
〈
c†k(t)ck(0)

〉
= ıtr

[
c†ke

Ltckρeq

]
, (6.40)
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where Lρ = dρ/dt can be found from Eq. (6.39) and the superoperator L is the Lindbla-

dian. The equilibrium state of the site has filling fk, so tr
[
c†kckρeq

]
= fk. In the Fock

basis of a single state, the equilibrium state is

ρeq =


1− fk 0

0 fk


 . (6.41)

A Jordan-Wigner transformation maps the electron creation and annihilation operators

onto spin operators, which allows us to write ckρeq = (fkσx+ ıfkσy)/2. For the equation

of motion, Eq. (6.39), the Lindblad operator is block diagonal in the the σx, σy subspace

and σI , σz subspace. This means we can separately solve for the dynamics using L

of those two subspaces. If we wish to calculate the action on a generic operator O =

a0σI + axσx + ayσy + azσz, for the σx, σy subspace:

σx
dax
dt

+ σy
day
dt

=− ı[ωkc†kck, axσx + ayσy] (6.42)

+ γk+

(
c†k(axσx + ayσy)ck −

1

2
{c†kck, axσx + ayσy}

)

+ γk−

(
ck(axσx + ayσy)c

†
k −

1

2
{ckc

†
k, axσx + ayσy}

)
.

Acting on both sides with (1/2)σx tr gives dax/dt = −γax/2 +ωkay with γ = γk+ +γk− .

Similarly with (1/2)σy tr, giving day/dt = −γay/2 − ωkax. Solving these equations of

motion we obtain

eLtckρeq = σxfk/2e
−tγ/2+ıωkt + σyfk/2e

−tγ/2−ıωkt. (6.43)

Then acting with ck and taking the trace gives

g<k (0, t) = ıe−tγ/2+ıωktfk, (6.44)
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for t ≥ 0. This can be readily employed to find the retarded and advanced Green’s

functions for the single state

g
r(a)
k (t, t′) = ∓ıΘ(±t∓ t′)e−ıωk(t−t′)−γ|t−t′|/2. (6.45)

or its Fourier transform, g
r(a)
k (ω) = (ω−ωk± ıγ/2)−1. Physically, the reservoir sites are

exchanging electrons with a larger external reservoir with an infinite number of electrons

and states without memory. The lesser Green’s function is also found to be

g<k (ω) = −fk [grk(ω)− gak(ω)] =
ıγf(ωk)

(ω − ωk)2 + γ2/4
. (6.46)

This expression recovers the original lesser Green’s function, Eq. (6.17), except that the

distribution is evaluated at the ωk of the state, rather than being a continuum over ω.

As we discuss below, this has the effect of broadening the density of states after they

are occupied, rather than occupying after broadening.

6.2.2 Steady-State Current

The general solution to the steady-states of the master equation (Eq. (6.39)) can also

be found in an analogous way to Jauho, Meir, and Wingreen and follows the same

process as the derivation for Eq. (6.30). In this case we use the equilibrium relation

from the previous section, Eq. (6.46), rather than using the one that has an ω-dependent

distribution f(ω). In practice, this derivation is the same but with a filling, fk, dependent

on the reservoir energy, εk.

That is, after applying the Markovian equilibrium property, Eq. (6.46), the expression

for the current, Eq. (6.27), is instead

I = −e
∑

i,j∈S

∑

α,β∈S

∑

k∈L

∑

l∈R

∫
dω

2π
vkivjkvαlvlβG

r
iα(ω)Ga

βj(ω) (6.47)

× [grl (ω)− gal (ω)] [grk(ω)− gak(ω)] {fk − fl} .
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Again, a concise expression for the current can be written by introducing the spectral

density

Γ
L(R)
ji (ω) = ı

∑

k∈L(R)

vjkvki [grk(ω)− gak(ω)] , (6.48)

and the population-weighted spectral density

Γ̃
L(R)
ji (ω) = ı

∑

k∈L(R)

fkvjkvki [grk(ω)− gak(ω)] , (6.49)

where the Fermi-Dirac distributions are included. Then, the current can be written as

I =
e

2π

∫ ∞

−∞
dω tr

[
Γ̃L(ω)Gr(ω)ΓR(ω)Ga(ω)− ΓL(ω)Gr(ω)Γ̃R(ω)Ga(ω)

]
, (6.50)

Note that, in this case, the integrand in Eq. (6.50) does not include the Fermi-Dirac dis-

tribution as a separate prefactor as in the Meir-Wingreen / Landauer formula, but rather

appears as a convolution with a Lorentzian due to the inclusion of a finite relaxation

time from the Markovian master equation.

When the reservoir states are symmetrically coupled to the system, a simplified expres-

sion results:

I = − e

2π

∑

k∈L

∑

i,j∈S
vikvkj(f

L
k − fRk )×

∫ ∞

−∞

dω γ

(ω − ωk)2 + γ2/4
Im[Gr

ij(ω)]. (6.51)

For this symmetric case, when the two extended reservoirs have the same chemical

potential, the calculated current I is always equal to zero. However, in the asymmetric

case, Eq. (6.47) can yield a non-zero current even with no applied bias. We will examine

this fact in Sec. 6.3 in order to develop a bound for when the Markovian master equation

is consistent with physical expectations.
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6.2.3 Small and Large Relaxation Limits

In similar fashion, we can derive the limiting expressions for the steady-state current in

the low and high relaxation rate regimes. The spectral function for a single reservoir

site connected to an implicit bath is given by

Ak(ω) = ı [grk(ω)− gak(ω)] =
γ

(ω − ωk)2 + γ2/4
. (6.52)

If γ is very small, Ak(ω) approaches 2πδ(ω − ωk). Then Ak(ω)fk ≈ Ak(ω)fL(R)(ω), so

long as f(ω) changes little over the width of Ak(ω), and the expression for the current

can be rewritten as

I1 ≈
e

2π

∫ ∞

−∞
dω [fL(ω)− fR(ω)]× tr

[
ΓL(ω)Gr(ω)ΓR(ω)Ga(ω)

]
. (6.53)

This recovers Eq. (5.3) from Sec. 5.2, where the spectral density and Green’s functions

include the relaxation rate γ. What this means is that the master equation can be used

to simulate transport, provided that γ is in a suitable range. Even the intermediate

regime can be accurately simulated, so long as Nr is sufficiently large.

Similarly for large γ, the integral within Eq. (6.51) can be calculated by transforming

out from the frequency domain:

∫ ∞

−∞

dω γ

(ω − ωk)2 + γ2/4
Gr
ij(ω) = 2π

∫ ∞

−∞
dt e−ıωk−γ|t|/2 Gr

ij(−t) ≈ −ı
4π

γ
δi,j , (6.54)

which applies to both interacting and non-interacting Green’s functions. In the non-

interacting case, this can be thought of an integration over the density of states for each

site in S. This yields an expression for the current in the large γ regime to be

I3 ≈ 2e/γ
∑

k∈L

∑

i∈S
v2
ki(f

L
k − fRk ), (6.55)
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where again the sum is over just a single set of k (either in the left or right extended

reservoir, which are identical).

When S consists of a single site, then the large-γ current is found to be

I3 ≈ 2e/γ
∑

k∈L
v2
k(f
L
k − fRk ). (6.56)

The sum of the v2
k terms is the transformation that diagonalizes the extended reservoir’s

single particle Hamiltonian.1 Thus,

∑

k∈L(R)

f
L(R)
k v2

k/J
2 → nL(R), (6.57)

where nL(R) is the occupation of the extended reservoir state in real space at the site

immediately adjacent to the system on the left (right). This makes a correspondence with

a setup with just a single extended reservoir site on each end (Nr = 1), I3 ≈ 2eJ2(nL −
nR)/γ. Essentially, the sites further away in the Nr > 1 case are effectively decoupled

from the system as any flow of electrons away from those sites is suppressed due to the

strong relaxation. Therefore, the current in the large γ regime is also independent of Nr

with the exception of discretization effects.

In contrast to the Landauer-like formalism, the Markovian master equation allows for

an explicit derivation showing only the occupation at the boundaries matter, i.e., all

other electrons are prevented from flowing to the system by the strong relaxation. This

is possible due to the well-defined occupation of each reservoir site. In the full model,

the states are broadened and then occupied, so there is no equivalent transformation to

a single edge site occupation like there is in the Markovian case.

We can, however, go further with the Markovian procedure. Within a small bias win-

dow, the reservoir coupling is approximately constant v2
k ≈ J2/Nr, and the sum of the

occupation terms is approximately the total number of states within the bias window

1This can also be seen working with directly with a diagonalized linear reservoir when vk = JUk1,
where U is the unitary transformation that diagonalizes the single particle Hamiltonian.
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∑
k(f
L
k − fRk ) ≈ V Nr/(W~). Substituting this in, we find I3 ≈ eV [2πJ2/(γW )](2π~).

Comparing with Eq. (5.10), the large γ current here is additionally inversely related to

the bandwidth and grows linearly with V . Thus, while there is similar physical behavior

to the full model, the large γ current is quantitatively very different for the Markovian

master equation, which reflects its lack of validity in this regime.

6.3 Validity of the Markovian Master Equation

This section quantifies the regimes where the master equation is physically valid. The

Markovian master equation is always mathematically valid in that it gives proper quan-

tum evolution. However, as we will see, it does not accurately represent the equilibrium

state at larger values of γ, which, e.g., leads to spurious currents and a break down of

detailed balance.

6.3.1 Broadening and the Fermi Level

The Markovian master equation broadens extended reservoir states across a wide range

of ω when the relaxation rate γ is large. That is, even with the Fermi level fixed in the

isolated extended reservoir, there is excessive electron occupation beyond this level in the

open system (succinctly, the Markovian equation occupies the states then broadens them,

rather than broadening then occupying). As an example, Fig. 6.1 shows the density of

states times the occupation for both the full and Markovian approaches. For small γ,

Fig. 6.1(a), the relaxation is weak enough that the states are still relatively localized

in energy. However, for large γ, Fig. 6.1(b), the electronic occupation is smeared too

much, and this allows current to flow even without a drop in chemical potential. This

difference is most apparent for states at the Fermi level, ωk ≈ ωF , as this is where the

distribution is most rapidly changing.

In the two approaches, only the lesser Green’s functions are different, and these only

differ by the distribution function, f(ω) compared to f(ωk). We quantify the error, ∆,
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Figure 6.1: Spectral density and population-weighted spectral density for a 1D
reservoir. The solid line is the spectral density, Eq. (6.48), times the Fermi-Dirac
distribution and the dashed line is the population-weighted spectral density,
Eq. (6.49). These correspond to the Landauer-like formula and the Markovian
master equation method respectively. The number of reservoir states Nr = 16,
bias and temperature are the same as previously, β = 40(J~)−1 and ωF = 0.25J ,

and the relaxation rate is (a) γ = 0.1J and (b) γ = J .

between the two by the integrated absolute difference,

∆ =

∫ ∞

−∞
dω

γ |f(ω)− f(ωk)|
(ω − ωk)2 + γ2/4

. (6.58)

To upper bound this error, we will use two features of ∆. One is that the error is

maximal when the state ωk is at the Fermi level, ωk = ωF . Two is that the Fermi
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distribution can be replaced by the piecewise continuous function

f(ω)→





1, ω ≤ ωF − 2
β~

1
2 − 1

4β~(ω − ωF ), |ω − ωF | < 2
β~

0, ω ≥ ωF + 2
β~

(6.59)

in order to obtain a bound of the error at the Fermi level. That is, this replacement has

a greater absolute difference to f(ωF ) = 1/2 than the original distribution function for

all ω. Using these two features, the error for any ωk is bounded by

∆ ≤ arctan

( −4

γβ~

)
+
π

2
+
γβ~

4
ln

(
1 +

16

γβ~

)
/
γβ~

4
ln

(
1

γβ~

)
. (6.60)

The condition for this error to be small is then γβ~ � 1. This can be interpreted as

requiring that the broadening due to the relaxation must be smaller than the broadening

caused by thermal processes. As well, it has a simple, intuitive mathematical meaning:

The maximal slope of the Fermi-Dirac distribution should be much smaller than γ, so

that the γ-induced smearing has no significant effect on the occupation.

Expanding on the above brief account, we can show that the error is maximal when ωk

is at the Fermi level by extremizing ∆,

d∆

dωk
=

d

dωk

∫ ∞

−∞
dω

γ |f(ω)− f(ωk)|
(ω − ωk)2 + γ2/4

= 0, (6.61)

which can be rewritten as

∫ ∞

−∞
dω
γ sign(ωk − ω)(f ′(ω)− f ′(ωk))

(ω − ωk)2 + γ2/4
= 0. (6.62)

When ωk is at the Fermi level, the term containing f ′(ωk) integrates to zero, as it is a

symmetric function multiplied by an antisymmetric function around ωk. Also when ωk

is at the Fermi level, f ′(ω) is symmetric around ωF (which comes from the relationship

f(ωF − ω) = 1 − f(ωF + ω) when ωk = ωF ), so f ′(ωF − ω) = f ′(ωF + ω). Thus, the

integrand is antisymmetric and it evaluates to zero. This therefore gives an extremum
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Figure 6.2: Asymmetric system response. (a) V the bias dependence of current
I versus γ. The bias is V ∈ {0, 0.025, 0.05, 0.1, 0.2}J~ from bottom to top. The
reservoirs states are equally spaced with a bandwidth of 4J , β = 40(J~)−1, and
the left reservoir is shifted by δL = 0.1J and the right is δR = −0.1J , making
δ = 0.2J . Note there is a negative current for no applied bias. (b) Difference
between current I and a Landauer calculation ILand versus the applied bias V
for Nr =∞. The solid line is near the peak current, γ = 0.004J , and the dashed
line is γ = J . The dotted line is the approximation from low temperature and

high bandwidth Eq. (6.64) for γ = J .

in the error. Moreover, when ωk < ωF , the slope is positive and when ωk > ωF , the

slope is negative, therefore the error is maximal at the Fermi level. In the limiting cases,

ωk → ±∞, the total error ∆ is zero, meaning that there is agreement when the state is

far away from the Fermi level.

Additionally, bounds on the relaxation rate and the number of states required can be

found for a given system by numerically integrating the spectral density above the Fermi

level for the zero temperature case. This yields a direct measure of the improperly

occupied high-energy states, even when they do not directly contribute to the electronic

current.

6.3.2 Asymmetric Reservoirs

Next, we will examine a system in between asymmetric reservoirs. When the asymmetry

of the L and R extended reservoir is due to a shift in their relative energies by δ, then
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we have ω′k = ωk + δ/2 for k ∈ L and ω′k = ωk − δ/2 for k ∈ R. Solving the equation

of motion, Eq. (6.39), shows that there is a non-zero current for the zero applied bias

(V = 0). Note that δ is a parameter that quantifies the asymmetry of the system.

Physically, the Fermi level on both reservoirs are identical, so the steady-state current

between them should be zero. When the reservoir density of states is broadened by γ, the

replacement of f(ω) by f(ωk), as the Markovian model does, results in some electronic

occupation above the Fermi level. This can give rise to an electronic current. Figure 6.2

shows the steady-state current I as a function of the relaxation γ for increasing values

of the applied bias V .

To simplify the analytic forms for the steady-state current, we will introduce a system

where the extended reservoirs are “Markovian” rather than 1D. The density of states

for the 1D case is approximately constant near ω = 0 as long as the bandwidth is

large enough. For the following, the states in the reservoirs are equally spaced between

frequencies ωmin and ωmax and then shifted by the asymmetry parameter δ, given k ∈
{1, . . . , Nr}: ωk = (ωmin − ∆/2) + ∆k + δ/2 where the state spacing is ∆ = (ωmax −
ωmin)/Nr and the couplings are constant vk =

√
8J2/(2πNr). Taking the limit as

Nr →∞, the integral of the single particle Green’s functions yields for L

Σr(a)(ω) =
8J2

2πW
ln

(
ω − δ/2− ωmin ∓ ıγ/2
ω − δ/2− ωmax ∓ ıγ/2

)
, (6.63)

and similarly for R. Here the bandwidth is W = ωmax − ωmin. The calculation of the

steady-state current then continues as previously.

At zero temperature (β → ∞), expanding the current for large bandwidth (and small

V , δ), the leading terms are

I ≈ eV (8J2/W )

~π[γ + 2(8J2/W )]
− 8eδγJ2

πW 3
. (6.64)

The first term gives the linear response current. For small γ, it is eV/2π~. The second

term gives a residual, unphysical current. So long as the asymmetry is small compared
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to the bandwidth or γ is sufficiently small, this term will be negligible compared to the

linear response contribution. Moreover, to accurately calculate results in the Landauer

regime for steady states, γ needs to be of the order of W/Nr (this condition depends on

the details of the setup, as discussed above regarding the small γ regime). Thus, so long

as

γ ≈W/Nr �W 3V/δJ2~ (6.65)

then the simulation will accurately predict steady state behavior. In other words, one

needs Nr � J2δ~/W 2V (or, for our particular example ealier, Nr � δ/V ), which is a

condition that is basically always fulfilled, to ensure the simulation gives accurate results

in the Landauer regime. This covers both small and intermediate regimes discussed

throughout the text.

6.4 Linear Reservoir with Equally Spaced States

The process of discretization of the states can have a large effect on the calculated current

when using the master equation, particularly when the bias window lies completely in

a gap between states. As an example, in the 1D lattice case, the extended reservoir

portion of H can be directly diagonalized via a sine transformation. Thus, if one wished

to study a large—but still finite—extended reservoir driving a current through a time-

dependent junction, one could increase Nr by increasing the size of the reservoir in real

space, a fact that also applies in higher dimensions. However, it can be more useful to

instead take Nr states evenly spaced in energy and increase Nr by decreasing the spacing.

That is, given k ∈ {1, . . . , Nr}, ωk = −(W/2 + ∆/2) + ∆k, where the state spacing is

∆ = W/Nr, places the states evenly within the energy band (note that W = 4J for this

model). In order for this to represent the 1D extended reservoir, the coupling constants

to the system need to incorporate the local density of states for the real-space lattice at

the boundary with the system. We can write the couplings with a single index, vk for

k ∈ L,R (instead of vki), as the coupling to the system’s boundaries only depend on k.
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Using this notation, the couplings

vk = 2(4J2 − ω2
k)

1/4
√
J/2πNr, (6.66)

have a factor of
√

4J2 − ω2
k, which is the local density of states for the 1D lattice. In the

Nr → ∞ limit, this choice of state discretization recovers the semi-infinite, real-space

lattice.

6.5 Single-Site Reservoir Rate Equation

When the broadening γ is much smaller than the state spacing ≈ W/Nr and for a

non-interacting system, conservation of energy requires that each electron entering the

system from a site with a given energy εk also leave the system from the a site with

the same energy. This allows the current to be broken into contributions from pairs of

extended reservoir states, which can be calculated from a system of rate equations. We

shall examine a three site system which consists of a single site from each of L and R
(indexed by k) and a single site in S. Further, we will assume different relaxation rates

on the left and right, γL and γR respectively to make the appearance of a “reduced γ”

clear.

When γ is small, the effect of the environment EL(R) is to relax each extended state

to a target filling, denoted by fL(R), at a rate γL(R). This current due to relaxation

is proportional to the difference between the onsite occupation of the reservoir state,

nL(R), and fL(R). In linear response, the current from EL and the current into ER are

ILk ≈ eγL(fLk − nLk ), (6.67)

IRk ≈ eγR(nRk − fRk ). (6.68)
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The current between S and the reservoir states is proportional to a rate parameter σ

times the difference in occupations:

ILSk ≈ eσ(nLk − nS), (6.69)

ISRk ≈ eσ(nS − nRk ). (6.70)

The value of σ is related to the coupling between the reservoir and system and describes

the particle flow rate. In the general case, this would be a function of the system-

reservoir coupling and the total Green’s function. For the example system, however, σ

scales as 1/Nr. In linear response, the conductance is independent of J and W , so the

sum of the total current from all Nr states must be a constant.

In the steady state, all four of these currents—ILk , IRk , ILSk , ISRk —must be equal, giving

the solution

Ik =
eσ(

2 + σ γL+γR
γLγR

)(fLk − fRk ). (6.71)

The quantity γLγR/(γL + γR) is the “reduced γ” between the two reservoirs and is

simply γ/2 when the relaxation rates are equal. The small γ (γ � σ) approximation for

Eq. (6.71) with equal relaxation rates is Ik ≈ e(γ/2)(fLk − fRk ), as used above.

This rate argument can be extended to the full Nr 6= 1 system by solving a system of 4Nr

equations for each of the incoming and outgoing currents and then equating the total

current into nS ,
∑

k I
LS
k , with the total current leaving

∑
k I
SR
k . When γL = γR = γ,

this yields the current through the system as

I ≈ eγ/2
∑

k

(fLk − fRk )
σ

σ + γ
. (6.72)

For small γ, this recovers the expression above. Additionally, the occupation of the

central site, nS , is found to be equal to the mean target filling,
∑

k(f
L
k + fRk )/(2Nr).

With a symmetrical distribution of reservoir state energies and bias window, then the

central site onsite density is 1/2.
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Lastly, a full solution involving a different σk for each reservoir mode is obtainable.

Assuming that the σk are symmetric between the left and right sides, the total current

flow recovers Eq. (6.72) to the lowest order of γ. The relaxation strength limits the total

current through the system and, so long as γ is sufficiently small, then the current is

independent of the system-reservoir coupling.

6.6 Conclusion

Working from a realistic set of physical assumptions, namely implicit reservoirs that

are kept at thermal equilibrium, we develop a set of equations that models electronic

transport across all regimes. However, if one starts directly with the master equation,

Eq. (2.22), then there are conditions under which it can fail in a particularly extreme

way: by allowing a current to flow even if the reservoirs have the same chemical potential.

The shift to an open system formalism makes some calculations more efficient, but care

must be taken to ensure that the technique remains physically correct.
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Chapter 7: Discord, Dephasing, and Steady States

The content in this Chapter examines the relationship between electronic correlations

and steady-state transport scenarios. In particular, we explore the ballistic-to-diffusive

transition in an open quantum system with an explicit dephasing term. In the model

described here, this transition and the measure of quantum discord—and, in turn, the

correlations—proceed continuously. The quantum discord decreases as the system be-

comes more diffusive, i.e., it becomes more classical. This work uses a simpler respre-

sentation of an open quantum system—using Eq. (2.22)—which was later expanded into

the formalism in Chapters 5 and 6.

7.1 Introduction

Solvable models of open quantum systems are important in the study of non-equilibrium

systems [42]. In particular, open systems can be used to simulate transport processes

at the nanoscale in cold-atom systems [159–161]. The dynamics of such systems can be

found via a time evolution of the density matrix and can be extended to the steady-

state regime, generally by either non-equilibrium Green’s function techniques [162] or by

solving for the fixed points of the master equation that governs the density matrix. This

Chapter focuses on the latter. We find the steady states of an driven fermionic lattice as

it is taken from the ballistic to the diffusive regime through the use of explicit dephasing.
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We show that there is a smooth decay of the quantum correlations—as quantified by

discord [163]—as transport becomes more diffusive.

We consider a one-dimensional lattice with an internal Hamiltonian of

H = −t̃
∑

i

c†ici+1 + h.c., (7.1)

where c†i and ci are fermionic creation and annihilation operators on site i respectively.

The ends of this lattice are then attached to implicit reservoirs which drive the transport.

Initially, the system is set out of equilibrium by increasing the occupation on one side and

decreasing it on the opposite. Then the system is allowed to time evolve until a quasi-

steady-state equilibrium is reached before recurrence. In the limit of large reservoirs,

this state would continue to exist indefinitely.

We consider the Markovian master equation in the Lindblad form (see Eq. (2.22))

dρ

dt
= Lρ := −ı[H, ρ] +

∑

k

LkρL
†
k −

1

2

{
L†kLk, ρ

}
. (7.2)

This forms the basis for the transporting lattice. In this state, the lattice displays zero

resistivity and perfect conductivity. In order to examine the effects of an electrical

impedance, this initial model is modified through a dephasing term, which is applied to

every lattice site:

Ln =
√
κc†ncn. (7.3)

Since all the operators in the master equation are quadratic, the state of the system can

be completely described by the elements of the correlation matrix cij =
〈
c†icj

〉
.

7.2 Discord

To calculate the quantum discord for our steady state or quasi-steady state solution, we

first calculate a reduced density matrix over sections A and B by tracing out the rest of
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the density matrix. The expression for the discord from A to B is given by Ref. [163]

D (ΠA : B) = I (A : B)− J (ΠA : B) = HA −HAB +H(B|ΠA), (7.4)

with the first term being the entropy in A. We choose A to be a single lattice site in

the center of the lattice (with index k) and B to be the site adjacent to it. This means

that our entropy is then

HA = −
〈
c†kck

〉
log
〈
c†kck

〉
−
(

1−
〈
c†kck

〉)
log
(

1−
〈
c†kck

〉)
, (7.5)

with log taken to be base 2. The next term is the entropy of the combined two systems,

which is calculated by

HAB =
∑

i

[−λi log λi − (1− λi) log (1− λi)] , (7.6)

where λi are the eigenvalues of the AB correlation matrix. The last term is a conditional

entropy on a measurement on k, which is calculated using the full density matrix.

7.2.1 General Measurement

The projection on a single site is a measurement of two orthogonal states:

|ψ+〉 = cos θ |0〉+ eiφ sin θ |1〉 (7.7a)

|ψ−〉 = e−iφ sin θ |0〉 − cos θ |1〉 , (7.7b)

with |0〉 and |1〉 corresponding to the unoccupied and occupied states on site k, respec-

tively. The variables θ and φ parametrize the measurement over all possible combina-

tions. We then write the elements of ΠA as

π± = |ψ±〉 〈ψ±| ⊗


1 0

0 1


 . (7.8)
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That is, this operator only acts on a single site k and leaves the rest of the density

matrix elements untouched. The probability of these outcomes are calculated by

p± = tr π±ρ = 〈π±〉 , (7.9)

or for our particular class of states this means that the probability is equal to

p+ = cos2 θ
〈
c†kck

〉
+ sin2 θ

(
1−

〈
c†kck

〉)
, (7.10)

and similarly for p−. Once we have the probabilities, we calculate the entropy of the

conditional states

ρB|π± = trA π±ρAB/p±. (7.11)

The last term in Eq. (7.4) is then equal to

H(B|ΠA) = p+HB|π+ + p−HB|π− , (7.12)

with HB|π± = −tr ρB|π± log ρB|π± . For our case, we minimize over site k using θ and

φ as our control parameters. The full density matrix, ρ, from our reduced correlation

matrix is used to calculate Eq. (7.12). We start with

ρAB =
∏

k

(〈
b†kσbkσ

〉
b†kσbkσ +

〈
bkσb

†
kσ

〉
bkσb

†
kσ

)
, (7.13)

where b†kσ diagonalize the reduced AB correlation matrix via a unitary transform U .

Thus, we can replace them with

b†kσ =
∑

i

U∗kic
†
iσ and bkσ =

∑

i

Ukiciσ, (7.14)

where, lastly, ciσ is created in the full basis by means of a Jordan-Wigner transformation:

ciσ =


1 0

0 −1



⊗j−1

⊗


0 0

1 0


⊗


1 0

0 1



⊗N−j

. (7.15)
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Figure 7.1: Calculation of the conditional entropy within a steady-state current.
H(B|ΠA) as a function of the two angles, φ and θ, that specify the state. In
this particular case, the lattice size N = 8, injection/depletion rate γ = 1 and
f = 1 (see Sec. 7.4), dephasing κ = 1, and the measurement was performed
with A being site 3 and B being site 4. The minimum value is independent of
ψ and lies close to, but not precisely, θ ≈ π/4. Since only two sites are under

examination, the minimization process is straightforward.

This gives us a 2N by 2N density matrix (with N = 2 in this case) which can then be

applied to the projection operators.

For this system, the conditional entropy is largely independent of φ, and the minimized

value lies close to θ ≈ π/4, as seen in Fig. 7.1. Some sample calculations are shown in

Fig. 7.2 for an eight-site lattice with injection, depletion, and dephasing.

7.2.2 Particle Conserving Measurement

An alternative approach to the discord calculation is to perform a single-site measure-

ment using a particle preserving projection on A. This measurement is not parametrized
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Figure 7.2: Minimum values of the quantum discord. (Left) Minimized discord
as a function of the dephasing strength, κ, with constant injection/depletion
rate, γ. The presence of the dephasing tends to reduce the total current and,
consequently, the discord. (Right) When the current, I, is held constant by

increasing γ as κ is increased, the discord initially increases.

as there is only one possible set:

π+ = c†kσckσ (7.16a)

π− = ckσc
†
kσ, (7.16b)

and the probabilities are equal to

p+ =
〈
c†kck

〉
= ck,k (7.17a)

p− = 1−
〈
c†kck

〉
= 1− ck,k. (7.17b)

The remaining eigenvalue is

λ =
〈
c†k+1ck+1

〉
= ck+1,k+1, (7.18)
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and the remaining site is unchanged by the projection. The expression for the discord

is thus

D (ΠA : B) =
∑

i

λi log λi + (1− λi) log(1− λi)− ck,k log ck,k − (1− ck,k) log(1− ck,k)

− ck+1,k+1 log ck+1,k+1 − (1− ck+1,k+1) log(1− ck+1,k+1), (7.19)

where λi are the eigenvalues of the two site correlation matrix:

λ± =
1

2

(
ck,k + ck+1,k+1 ±

√
(ck,k − ck+1,k+1)2 + 4c2

k,k+1

)
. (7.20)

The expression for the discord using these eigenvalues is equal to the negative of the

entropy of the original two-by-two correlation matrix plus the entropy of the same matrix

with off-diagonal terms set to zero. When we perform this single site measurement, the

correlation between systems A and B is destroyed.

7.2.3 Four Site, Particle Conserving Measurement

The discord calculation in Sec. 7.2.2 measured a single particle site, which could be in a

superposition of up and down spins. Since we are more interested in the total particle

movement in this system, we restrict our projective measurement to those that conserve

particle number. Similar to the single site spin, we define the most general creation

operator on two sites as

d†+ = cos(θ)c†i + eiφ sin(θ)c†j , (7.21)

with its corresponding orthogonal piece as

d†− = e−iφ sin(θ)c†i − cos(θ)c†j . (7.22)

We then define our projectors as

{πk} =
{
d†+d+d

†
−d−, d+d

†
+d
†
−d−, d

†
+d+d−d

†
−, d+d

†
+d−d

†
−

}
, (7.23)
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Figure 7.3: Conditional entropy of the two-site measurement. H(B|ΠA) as
a function of the two angles specifying the state, φ and θ in Eq. (7.21) and
Eq. (7.22). In this case, N = 8, Γ = 1, f = 1, κ = 1, and the measurement
was performed with A being sites 3 and 4 and B being sites 5 and 6. Again,
φ is irrelevant for the measurement, leading to a single θ that determines the

difference.

and calculate discord the same way as in Eq. (7.4), only with four possible outcomes of

the measurement rather than two. The conditional entropy on the measurement can be

written entirely in terms of the correlation matrix:

c′i,j|πk =
1

pk

〈
πkc
†
icjπk

〉
, (7.24)

where pk is the probability of the measurement 〈Πk〉. The application of a Wick de-

composition to the expression in Eq. (7.24) gives a closed form for the new correlation

matrix, although in practice it is easier to use the density matrix directly.

The plot of the conditional entropy for this measurement is shown in Fig. 7.3. Once

again, the phase, φ was found to be irrelevant to the calculation of the conditional

entropy, since off-diagonal elements of the correlation matrix are purely imaginary. The

conditional entropy only varies by a relatively small amount over the whole range of
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Figure 7.4: Minimized discord of the two-site particle basis measurement. In
the eight-site system, the quantum discord was found as a function of (Top Left)
γ, the injection term, and (Top Right) κ, the dephasing term. The bulk of the
change of discord is due to the decrease or increase in current. (Bottom) When
this is accounted for by increasing γ to compensate for κ and keep the current

constant, the discord varies on a much smaller scale and increases.

measurements, so it is likely that the discord calculation is dominated by the entropy of

the system and the system-environment terms. Figure 7.4 shows the minimized discord

for the eight-site system as functions of the injection and the dephasing terms.
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7.3 Analytical Results

With a known two-particle correlation matrix, the 4-by-4 density matrix is of the form

ρ =




α 0 0 0

0 β ε 0

0 ε∗ δ 0

0 0 0 σ



. (7.25)

With a high resistivity, the current flowing though the lattice will limited, so the off-

diagonal term, ε in Eq. (7.25), serves as an expansion parameter. Operating on this

matrix for the |+〉 operator on site A gives the conditional density matrix as (leaving

off the normalization)

ρB|+ =


 cos2(θ)α+ sin2(θ)δ ε cos(θ) sin(θ)

ε cos(θ) sin(θ) cos2(θ)β + sin2(θ)σ


 , (7.26)

and with 〈−| gives

ρB|− =


 sin2(θ)α+ cos2(θ)δ −ε sin(θ) cos(θ)

−ε sin(θ) cos(θ) sin2(θ)β + cos2(θ)σ


 . (7.27)

These two density matrices yield probability of measurement for the + and − states

equal to

p+ = cos2(θ)α+ sin2(θ)δ + cos2(θ)β + sin2(θ)σ, (7.28a)

p− = sin2(θ)α+ cos2(θ)δ + sin2(θ)β + cos2(θ)σ. (7.28b)
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The ρB|+ density matrix yields eigenvalues of

λ+p+ =
1

2
(±{[cos2(θ)α+ sin2(θ)δ]2 − 2[cos2(θ)α+ sin2(θ)] · [cos2(θ)β + sin2(θ)σ]

+ 4[ε cos(θ) sin(θ)]2 + [cos2(θ)β + sin2(θ)σ]2}1/2

+ cos2(θ)α+ sin2(θ)δ + cos2(θ)β + sin2(θ)σ), (7.29a)

and for ρB|− the eigenvalues are

λ−p− =
1

2
(±{[sin2(θ)α+ cos2(θ)δ]2 − 2[sin2(θ)α+ cos2(θ)] · [sin2(θ)β + cos2(θ)σ]

+ 4[−ε sin(θ) cos(θ)]2 + [sin2(θ)β + cos2(θ)σ]2}1/2

+ sin2(θ)α+ cos2(θ)δ + sin2(θ)β + cos2(θ)σ). (7.29b)

Reapplication of the normalization divides the eigenvalues by the probabilities p+ and

p−:

λ+ =
1

2

{
1±

√
[cos2(θ)α+ sin2(θ)δ − cos2(θ)β − sin2(θ)σ]2 + 4[ε cos(θ) sin(θ)]2

[cos2(θ)α+ sin2(θ)δ + cos2(θ)β + sin2(θ)σ]2

}
,

(7.30a)

λ− =
1

2

{
1±

√
[sin2(θ)α+ cos2(θ)δ − sin2(θ)β − cos2(θ)σ]2 + 4[ε sin(θ) cos(θ)]2

[sin2(θ)α+ cos2(θ)δ + sin2(θ)β + cos2(θ)σ]2

}
.

(7.30b)

Expanding the two previous expressions for small ε yields the expressions for the eigen-

values up to second order to be

λ+ =
1

2

{
1±

√
[cos2(θ)α+ sin2(θ)δ − cos2(θ)β − sin2(θ)σ]2

[cos2(θ)α+ sin2(θ)δ + cos2(θ)β + sin2(θ)σ]2

}
, (7.31a)

λ− =
1

2

{
1±

√
[sin2(θ)α+ cos2(θ)δ − sin2(θ)β − cos2(θ)σ]2

[sin2(θ)α+ cos2(θ)δ + sin2(θ)β + cos2(θ)σ]2

}
. (7.31b)
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Next, we require the difference

H(p+ρB|+ + p−ρB|−)− p+H(ρB|+)− p−H(ρB|−). (7.32)

The first term in the expression undoes the normalization, so the combined density

matrix is just Eq. (7.26) and Eq. (7.27) added together:

p+ρB|+ + p−ρB|− =


 α+ δ 0

0 β + σ


 (7.33)

with eigenvalues simply equal to the diagonal elements of this matrix. These two mea-

surements of the entropy are close, with the small-ε expansion much simpler than the

non-approximate minimization routine.

7.4 Open System Exact Solution

In the previous section, the one-dimensional lattice was modeled as an open quantum

system. Using the master equation (7.2) from above, injection and depletion terms are

added to the ends of the lattice by way of additional Lindblad operators:

LL+ =
√
γfLc

†
1 LL− =

√
γ(1− fL)c1

LR+ =
√
γfRc

†
N LR− =

√
γ(1− fR)cN , (7.34)

with γ being the coupling strength to the implicit reservoirs and fL and fR being the

target occupation for the leftmost and rightmost sites, respectively. In the absence of a

connecting lattice, the occupation of the first and last sites decay towards these values.

Commonly, a parameter, f , is chosen such that fL,R = (1∓f)/2 which keeps the coupled

sites are symmetrically occupied.
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The steady state of the system is such that

dcij
dt

=
d
〈
c†icj

〉

dt
= Tr

(
dρ

dt
c†icj

)
= 0. (7.35)

The time evolution of the correlation matrix can be expressed as a superoperator M

acting on c, Mc = 0. The steady state is found by solving for c using a matrix inversion

on the vectorized correlation matrix and its corresponding superoperator. It is known

to be a unique fixed point for symmetric injection and depletion [164]. For example, in

the two site case, with f = 0, this reduces down to




−γ ıt̃ −ıt̃ 0

ıt̃ −γ − κ 0 −ıt̃
−ıt̃ 0 −γ − κ ıt̃

0 −ıt̃ ıt̃ −γ







〈
c†1c1

〉

〈
c†1c2

〉

〈
c†2c1

〉

〈
c†2c2

〉




=




−γ
0

0

0



. (7.36)

Multiplying the master equation (7.2) by c†icj on the right hand side and performing a

trace leads to the general form for the time evolution of our correlation matrix:

ċi,j = ıt̃ (ci−1,j + ci+1,j − ci,j−1 − ci,j+1)− κci,j(1− δi,j)

− γ

2
(1 + f) (δi,1c1,j/2 + δj,1ci,1/2− δi,1δj,1 + δi,NcN,j/2 + δj,Nci,N/2)

− γ

2
(1− f) (δN,icN,j/2 + δN,jci,N/2− δi,Nδj,N + δi,1c1,j/2 + δj,1ci,1/2) . (7.37)

For i = j = 1 and assuming that the correlation matrix is tridiagonal (ci,i+b = 0, b > 1),

this expression becomes for the steady state:

− 2t̃ Im c1,2 − γc1,1 + (γ/2)(1 + f) = 0 (7.38)

and for i = j = N :

− 2t̃ Im cN,N−1 − γcN,N + (γ/2)(1− f) = 0; (7.39)



134

5 10 15 20 25 30

i

0.2

0.3

0.4

0.5

0.6

0.7

0.8

〈n
i〉

κ = 0.00

κ = 0.05

κ = 0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

κ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

p

5 10 15 20 25 30

i

0.2

0.3

0.4

0.5

0.6

0.7

0.8

〈n
i
〉

σ = 0.1

σ = 0.2

σ = 0.3

Figure 7.5: Simulation of dephasing-induced resistivity. (Top Left) Onsite den-
sities for a lattice with length N = 32 with a fixed γ = 1, f = 1 injection and
depletion terms, with increasing amounts of dephasing, κ. For κ = 0, the onsite
density is constant, which corresponds to ballistic transport. As the dephas-
ing term increases, the per-site density increases linearly between the two sides
of the lattice, which indicates diffusive transport. The process occurs smoothly
between the two as continuous transition. (Top Right) The resistivity as a func-
tion of κ, for constant γ and f , shows an exact correspondance between the two,
as was found analytically. (Bottom) For comparison, a random onsite energy
(with normal distribution standard deviation σ) is applied to each site in the
lattice and the same density is calculated, with resulting values were averaged

over multiple runs.
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for j = i+ 1

ıt̃ci+1,i+1 − ıt̃ci,i + κci,i+1 = 0, (7.40)

except for the end sites, which give the expressions

ıt̃c2,2 − ıt̃c1,1 + κc1,2 − γc1,2/2 = 0 (7.41)

and

ıt̃cN,N − ıt̃cN−1,N−1 + κcN−1,N − γcN−1,N = 0. (7.42)

Summing up all the pairs of expressions for Eq. (7.40) cancels all the internal pairs of

onsite densities (assuming that the current is the same throughout the whole lattice):

− ıt̃c1,1 + ıt̃cN,N − κ(N − 1)ci,i+1 − γci,i+1 = 0. (7.43)

Inserting our expressions for the end terms into this expression yields

− ıt̃
(

1 + f

2
− 2t̃

γ
Im ci,i+1

)
+ ıt̃

(
1− f

2
+

2t̃

γ
Im ci,i+1

)
+ ı[κ(N − 1) + γ] Im ci,i+1 = 0,

(7.44)

and solving for the nearest-neighbor correlations, and therefore the current, gives

Im ci,i+1 =
γt̃f

γ2 + κγ(N − 1) + 4t̃2
. (7.45)

A local resistivity per site can be described as in Ref. [27]:

p =
1

Ia

∂ni
∂i

, (7.46)

where I is the total current through the lattice and a is the lattice spacing. From
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Figure 7.6: Discord of an interacting steady state. Two-site discord measure-
ment of the interacting system steady state as a function of the measurement
angles, φ and θ, with lattice size N = 4, injection/depletion of f = 1 and γ = 1,
and density-density interaction strength of U = 1. Since the system only con-
sists of a few sites the steady-state solution was found exactly. The discord is

largely independent of the phase φ.

Eq. (7.40), this measure of the resistivity is exactly proportional to κ analytically. Fig-

ure 7.5 shows the onsite density for varying values of κ. As the dephasing increases, so

does the slope and therefore the local resistivity, p. Using Eq. (7.46), the slope can be

calculated numerically from the electronic density response.

7.5 Interacting System

An alternative method of providing resistivity in the system is to alter the Hamiltonian

specified in (7.2) to include spin and an onsite density-density interaction instead of a

dephasing term:

H = −t̃
∑

i,σ

(
c†iσci+1σ + h.c.

)
+ U

∑

i

c†i↑ci↑c
†
i↓ci↓. (7.47)



137

0 20 40 60 80 100 120 140

U2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
ra

ce
D

is
ta

n
ce

0 20 40 60 80 100 120 140

U2

0

10

20

30

40

50

60

p

Figure 7.7: Resistivity from an interacting current. (Left) The presence of
a many-body interaction term causes correlations to be developed in higher
orders. The trace distance between the complete density matrix and one built
from single particle correlations provides a measure of this difference. (Right)
Resistivity can be directly calculated using Eq. (7.46) from the current response,
as measured between the two center lattice sites. Here, N = 4, f = 1 and γ = 1,
and the resistivity increases as a function of the interaction strength squared,

U2.

The injection and depletion terms remain as previously shown in Sec. 7.4. The steady

state of the full density matrix was then found via a fixed-point iteration of the Lindblad

master equation, including spin.

The presence of the interaction term U generates higher order correlations that are not

seen in the quadratic Hamiltonian case (Figure 7.7) but continues to restrict the flow of

particles through the lattice. From numerical calculations, the measure of the resistivity

through the center of the lattice is proportional to the interaction strength squared.

7.6 Conclusion

The application of onsite dephasing provides an alternative to induced disorder in creat-

ing diffusive systems. This matches intuition: as particles scatter off impurities or inter-

act with one another, they will effectively lose correlations and become more localized,

and use of the dephasing term provides an explicit decay to these states while provid-

ing a direct steady-state calculation. In cases where the scattering is strong—such as
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in transport through extremely constricted regions—applying a random disorder would

usually require either a time-dependent effect or many calculations with a new state in

order to yield the resistivity. In addition, the quantum discord can provide a measure-

ment of the level of correlations in electronic transport. In the model described here,

this transition and the measure of quantum discord—and, in turn, the correlations—

proceed continuously. This work establishes a quantitative connection between discord

and resistivity and an analytical connection remains a subject for future work.
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Chapter 8: Conclusion

Even though the fundamental nature of quantum physics has remained relatively un-

changed since its inception in the 1920’s, there is still much progress to be made in un-

derstanding time-dependent processes and mechanisms. The development of nanoscale

sensing, the harnessing and control of structural fluctuations, and the advancement of

next-generation materials require a treatment of electron transport beyond the level of

traditional methods. In this thesis, we reported new theoretical and computational tools

to help understand underlying physical processes in complex systems.

We discussed two complementary approaches of simulation of electron transport: quan-

tum mechanically, using ultra-cold atoms as the constituent particles; and classically,

performing numerical simulations on a classical computer. We developed an operational

definition for the local density of states for strongly interacting particles, which can be

used to study dynamical properties of a many-body system and provides a novel look

at the state distribution. We also presented an in-depth examination of an interaction

driven fermionic current with several levels of approximation.

In addition, we described a method of simulating a nanoscale electronic device through

the use of an open quantum systems and discussed the considerations and limitations

thereof. We show that an explicit treatment of the leads—in the presence of electronic
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relaxation—yields a computationally efficient process for real-time simulation. More-

over, it gives a general simulation technique for finding periodic steady-states, the decay

of local disturbances, and the real-time response to structural changes.

At present, there still remains a clear divide between equilibrium methods, which al-

low for a more rigorous and error-controlled approach, and those associated with time

evolution, which often have require a greater amount of control and correctness checks.

Whether or not an efficient, provably convergent method exists for all time-dependent

systems continues to be an open problem. However, we have shown that a carefully con-

structed quantum or classical simulation can elucidate quantum physics at previously

unobtainable level of detail.
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dependent density-matrix renormalization-group using adaptive effective Hilbert

spaces. J. Stat. Mech: Theory Exp., 2004(04):P04005, 2004.

[17] Rachel Courtland. Gordon Moore: The man whose name means progress. IEEE

Spectrum, March 2015.

[18] Anne Meade, Jim Buckley, and John J Collins. Challenges of evolving sequential

to parallel code: an exploratory review. In Proceedings of the 12th International



143

Workshop on Principles of Software Evolution and the 7th annual ERCIM Work-

shop on Software Evolution, pages 1–5. ACM, 2011.

[19] David Kirk et al. NVIDIA CUDA software and GPU parallel computing architec-

ture. In ISMM, volume 7, pages 103–104, 2007.

[20] Alejandro Duran and Michael Klemm. The Intel R© many integrated core architec-

ture. In High Performance Computing and Simulation (HPCS), 2012 International

Conference on, pages 365–366. IEEE, 2012.

[21] Satyendra Nath Bose. Plancks gesetz und lichtquantenhypothese. Z. phys, 26(3):

178, 1924.

[22] Albert Einstein. Quantentheorie des einatomigen idealen Gases. Akademie der

Wissenshaften, in Kommission bei W. de Gruyter, 1924.

[23] Christopher J Pethick and Henrik Smith. Bose-Einstein condensation in dilute

gases. Cambridge university press, 2002.

[24] William D Phillips and Harold Metcalf. Laser deceleration of an atomic beam.

Phys. Rev. Lett., 48(9):596, 1982.

[25] Harold J Metcalf and Peter Straten. Laser cooling and trapping of neutral atoms.

Wiley Online Library, 2007.

[26] W Ketterle and NJ Van Druten. Evaporative cooling of trapped atoms. Adv. At.,

Mol., Opt. Phys., 37, 1996.

[27] Jean-Philippe Brantut, Jakob Meineke, David Stadler, Sebastian Krinner, and

Tilman Esslinger. Conduction of ultracold fermions through a mesoscopic channel.

Science, 337(6098):1069–1071, 2012.

[28] David Stadler, Sebastian Krinner, Jakob Meineke, Jean-Philippe Brantut, and

Tilman Esslinger. Observing the drop of resistance in the flow of a superfluid

Fermi gas. Nature, 491(7426):736–739, 2012.



144

[29] Jean-Philippe Brantut, Charles Grenier, Jakob Meineke, David Stadler, Sebastian

Krinner, Corinna Kollath, Tilman Esslinger, and Antoine Georges. A thermoelec-

tric heat engine with ultracold atoms. Science, 342(6159):713–715, 2013.

[30] Sebastian Krinner, David Stadler, Jakob Meineke, Jean-Philippe Brantut, and

Tilman Esslinger. Superfluidity with disorder in a thin film of quantum gas. Phys.

Rev. Lett., 110(10):100601, 2013.

[31] Dominik Husmann, Shun Uchino, Sebastian Krinner, Martin Lebrat, Thierry Gi-

amarchi, Tilman Esslinger, and Jean-Philippe Brantut. Connecting strongly cor-

related superfluids by a quantum point contact. Science, 350(6267):1498–1501,

2015.

[32] Sebastian Krinner, David Stadler, Dominik Husmann, Jean-Philippe Brantut, and

Tilman Esslinger. Observation of quantized conductance in neutral matter. Nature,

517(7532):64–67, 2015.

[33] Sebastian Krinner, David Stadler, Jakob Meineke, Jean-Philippe Brantut, and

Tilman Esslinger. Observation of a fragmented, strongly interacting fermi gas.

Phys. Rev. Lett., 115(4):045302, 2015.

[34] Wolfgang Hänsel, Peter Hommelhoff, TW Hänsch, and Jakob Reichel. Bose-
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[102] Alexey V Ponomarev, Javier Madroñero, Andrey R Kolovsky, and Andreas Buch-

leitner. Atomic current across an optical lattice. Phys. Rev. Lett., 96(5):050404,

2006.

[103] Michael J Hartmann and Martin B Plenio. Migration of bosonic particles across

a Mott insulator to a superfluid phase interface. Phys. Rev. Lett., 100(7):070602,

2008.

[104] A Polkovnikov, K Sengupta, A Silva, and M Vengalattore. Nonequilibrium dy-

namics of closed interacting quantum systems. Rev. Mod. Phys., 83:863, 2011.

[105] Massimiliano Di Ventra and Tchavdar N Todorov. Transport in nanoscale systems:

the microcanonical versus grand-canonical picture. J. Phys.: Condens. Matter, 16

(45):8025, 2004.

[106] Chih-Chun Chien and Massimiliano Di Ventra. Dynamical crossover between the

infinite-volume and empty-lattice limits of ultra-cold fermions in 1D optical lat-

tices. EPL (Europhysics Letters), 99(4):40003, 2012.

[107] A Ramanathan, KC Wright, SR Muniz, M Zelan, WT Hill III, CJ Lobb, Kristian

Helmerson, WD Phillips, and GK Campbell. Superflow in a toroidal Bose-Einstein

condensate: an atom circuit with a tunable weak link. Phys. Rev. Lett., 106(13):

130401, 2011.



152

[108] Kevin Henderson, Changhyun Ryu, Calum MacCormick, and MG Boshier. Ex-

perimental demonstration of painting arbitrary and dynamic potentials for Bose-

Einstein condensates. New J. Phys., 11(4):043030, 2009.

[109] W Hofstetter, J I Cirac, P Zoller, E Demler, and M D Lukin. High-temperature

superfluidity of fermionic atoms in optical lattices. Phys. Rev. Lett., 89(22):220407,

2002.

[110] Neil Bushong, Na Sai, and Massimiliano Di Ventra. Approach to steady-state

transport in nanoscale conductors. Nano Lett., 5(12):2569–2572, 2005.

[111] Chen-Lung Hung, Xibo Zhang, Nathan Gemelke, and Cheng Chin. Slow mass

transport and statistical evolution of an atomic gas across the superfluid–mott-

insulator transition. Phys. Rev. Lett., 104(16):160403, 2010.
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Appendix A: Transformations, Distance Measures, and Examples

This Appendix contains a collection of various calculations and examples that were

useful in the course of writing this thesis. More details on these and other methods can

be found in most quantum mechanics/transport textbooks, such as Refs. [38, 42, 55, 68].

A.1 Jordan-Wigner Transformation

To specify the numerical form for the c†i operators, it is natural to map them onto a

spin system, of which the creation and annihilation operators correspond to the raising

and lowering operators of a single spin. The presence of a particle can be represented

by a spin up state, while the lack of a particle is spin down. The raising and lowering

operators in Pauli matrix form are simply

σ+ =


0 1

0 0


 (A.1a)

σ− =


0 0

1 0


 . (A.1b)

It is tempting to use these expressions for the fermionic system, with each site being a sin-

gle spin; however, care must be taken so that the anticommutation relations, Eqs. (2.6),
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are fulfilled. If we index each spin operator with the site i that they act on, we find

that {σi−, σi+} = σI . On different sites, however, the relationship is [σi−, σj+] = 0. To

correct this, a sign change must be introduced when the operation is performed in the

opposite order. There are many possible ways to do this, but the typical method is to

make it such that the σ+ picks up a negative sign when applied to a lower index than

the σ− operator. The adjusted expressions for the transformations are

c†i = σ⊗i−1
z ⊗ σ+ ⊗ σ⊗N−iI (A.2a)

ci = σ⊗i−1
z ⊗ σ− ⊗ σ⊗N−iI , (A.2b)

or, alternatively, in Pauli matrix form

c†i =


1 0

0 −1



⊗i−1

⊗


0 1

0 0


⊗


1 0

0 1



⊗N−i

(A.3)

and similarly for ci .

Since we defined the lack of particle as spin down, we can build the vacuum (or com-

pletely unoccupied) state from the product of N spin down states:

|ψ0〉 =


0

1


⊗


0

1


⊗ · · · ⊗


0

1


 =


0

1



⊗N

, (A.4)

which we can then build up any desired state by applying the creation operators to

it. These operators allow for an explicit matrix form for the Hamiltonian, H, as well.

With this we can calculate the time evolution through a forward integrator (useful if H
is sparse, which it often is) or by exponentiating it to find the time evolution operator

(which can be difficult to impossible).



163

A.2 Wick’s Theorem

A common method of working with higher-order correlations is to apply Wick’s Theorem.

There are several different forms and derivations, but Ref. [162] provides one that is most

suitable for our needs. The Wick decomposition allows us to write expectation values

of operators into products of expectation values of lower order correlations:

〈ABCD〉 → 〈AB〉 〈CD〉 − 〈AC〉 〈BD〉+ 〈AD〉 〈BC〉 , (A.5)

where A, B, C, and D are any operators in our Hilbert space. For density matricies of

the form ρ = eA, with A being a single-particle operator, this decomposition is exact.

Therefore, it is true for eigenstates of the system, product states, and thermal states,

among others. For other states, the Wick decomposition then becomes an approximation

to the true expectation value.

Rather than reproduce the general case given an arbitrary number of operators, what

follows is a proof of Eq. (A.5) given the operators are fermionic creation and/or annihi-

lation operators.1

Without loss of generality, A may be written in terms of single arbitrary operators A =
∑

iAia
†
iai . Consequently, using the commutation relations, Eq. (2.6), and expanding

the exponential,

a†iρ = e−Aiρa†i (A.6a)

aiρ = eAiρai . (A.6b)

Next, the expression on the left in Eq. (A.5) can be written instead as
〈
a†iaja

†
kal

〉
by

recognizing that A through D must be written as linear combinations of the ai operators,

so it can always be expanded and later collapsed through this form. Additionally, all two-

particle correlations must have the same number of creation and annihilation operators

1Equation (A.5) is also the most commonly used form for the calculations in this thesis.
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to have a non-zero value, and therefore they can use the commutation relations to put

them in this order.

For a single-particle correlation, we use the density matrix commutations and the cyclic

property of the trace to show that

tr(ρa†iaj) = δij − tr(ρaja
†
i ) = δij − e−Aj tr(ajρa

†
i ) = δij − e−Aj tr(ρa†iaj), (A.7)

and therefore 〈
a†iaj

〉
= tr(ρa†iaj) =

δij
1− e−Aj . (A.8)

Similarly, for the two-particle correlation, we have

tr(ρa†iaja
†
kal ) = δkltr(ρa

†
iaj) + tr(ρa†ial aja

†
k)

= δkltr(ρa
†
iaj) + δiltr(ρaja

†
k)− tr(ρal a

†
iaja

†
k)

= δkltr(ρa
†
iaj) + δiltr(ρaja

†
k)− e−Altr(ρa

†
iaja

†
kal ). (A.9)

Solving this expression for the larger correlation function and using Eq. (A.8), we see

that

tr(ρa†iaja
†
kal ) =

δkl
1− e−Al tr(ρa

†
iaj) +

δil
1− e−Al tr(ρaja

†
k)

= tr(ρa†kal )tr(ρa
†
iaj) + tr(ρa†ial )tr(ρaja

†
k)

or

〈
a†iaja

†
kal

〉
=
〈
a†iaj

〉〈
a†kal

〉
+
〈
a†ial

〉〈
aja
†
k

〉
. (A.10)

This argument is easily expanded into the general case, as in Eq. (A.5), and to include

even higher order correlation functions.

While the derivation makes an assumption about the form of the density matrix, this

decomposition becomes an approximation when the state is “close” to that form. As
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an example, if a two-particle operator is acting on a state, such as c†i↑cj↑c
†
i↓cj↓, then

this allows us to cast it into mean field form as c†i↑cj↑

〈
c†i↓cj↓

〉
. That is, we use the

expectation value rather than the true correlation function. Smaller fluctuations on

individual particles do not matter as much as the aggregate average. This type of many-

body to single-particle approximation first appeared to study phase transitions [165] and

is deeply studied with respect to fermionic systems [166].

A.3 Quantum Discord

In Sec. 2.4, we discussed the entanglement entropy and how it can measure the amount

of correlations between two parts of the system. However, correlations can develop

in fully classical systems as well. This did not matter before because we just wanted

to minimize the Hilbert space, but it occasionally becomes necessary to separate the

quantum correlations from the classical ones. The measure of this is known as the

quantum discord [163].

The main idea behind quantum discord is that there are two ways of representing the

mutual information:

I(A;B) ≡ H(A) +H(B)−H(A,B) (A.11a)

J(A;B) ≡ H(A)−H(A|B). (A.11b)

The expression H(A) is the information entropy, H(A,B) is the joint entropy, and

H(A|B) is the conditional entropy. An application of the Bayes rule shows that these

two expressions are identical for a classical system. However, if we wish to apply this

to a quantum system via the usual use of the von Neumann entropy, we find that these

expressions become

I (A : B) = HA +HB −HAB (A.12a)

J (ΠA : B) = HB −H(B|ΠA). (A.12b)
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For the first expression, the entropy is replaced by its quantum version over the whole

system or subsystem. That is HAB = H(ρ) and HA = H(trBρ) if A and B constitute the

entire system. In the quantum case, in order to make the same conditional statement

about “B given A’,’ we must define a measurement on the state of A, which is ΠA. The

discord is the difference between these two expressions for mutual information:

D (ΠA : B) ≡ I (A : B)− J (ΠA : B) = HA −HAB +H(B|ΠA). (A.13)

In the true measure of quantum discord, ΠA is taken to be the measurement that

maximizes the discord over all possible states. As this requires variation over many

parameters for even small systems, the computation is exponential in the dimension

of the Hilbert space and so other measures have been proposed that are simpler to

calculate, such as geometric quantum discord [174] where the discord can be quantified

in a more computable manner. However, it is not a faithful measure in general.

A nonzero calculation of the discord indicates the presence of correlations that exist

due to quantum operators, which could otherwise not be found in classical systems.

More importantly, it is possible to find states where the discord is nonzero but the

entanglement entropy is zero, which means that is possible for a separable state to still

exhibit quantum effects, which means that the lack of entanglement alone is not sufficient

to define a classical state. A state with zero discord is known as a pointer state [175],

and is the preferred notion of classicality within a quantum system.

A.4 Distance Measurement

Often it becomes necessary to quantify how close two quantum states are to one another,

for example, when examining an approximate solution to a known analytic case. Given

two quantum states, ρ and σ, we define the trace distance between them as [68]

D(ρ, σ) ≡ 1

2
tr|ρ− σ|, (A.14)
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where we define the norm of an operator to be |A| ≡
√
A†A, with a positive square root.

Obviously if ρ and σ are the same state then the trace distance is zero, and D will always

be positive. An intuitive way to consider the trace distance is to consider a pair of spin

states, which can be represented on what is known as a Bloch sphere. If the states are

ρ =
I + ~r · ~σ

2
and σ =

I + ~s · ~σ
2

, (A.15)

where ~σ is the vector of Pauli matrices, then

D(ρ, σ) =
|~r − ~s|

2
. (A.16)

In other words, the trace distance is half the Euclidean distance between them on the

Block sphere. There are several useful properties of the trace distance such as preserva-

tion over unitary transformations,

D(UρU †, UσU †) = D(ρ, σ), (A.17)

triangle inequality,

D(ρ, τ) ≤ D(ρ, σ) +D(σ, τ), (A.18)

and that quantum operations are contractive,

D(E(ρ), E(σ)) ≤ D(ρ, σ). (A.19)

A.5 Switching Between Levels of Approximation

Most of the mathematical details described above and in the main text can apply from

exact calculations to mean-field approximations. This section contains examples of how

one can move “up” or “down” in the level of detail, while still describing the same

system.
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A.5.1 Operator to Superoperator Conversions

Often it is useful to move from a left-right matrix multiply, such as that in Eq. (2.22),

to only a left matrix multiply or even a fully linearized left matrix multiply. If the

equation of motion is put into this form, then the usual techniques with working with

linear differential equations apply. For instance, if the differential equation is in the form

ẋ = Mx, (A.20)

with x a vector and M a matrix, then the exact solution can be found simply by

exponentiating M, if the number of variables is small enough.

In general, we can define a rank-4 superoperator, Ω, acting on a 2D matrix2 c as

(Ω · c)ij =
∑

kl

Ωijklckl. (A.21)

For a closed non-interacting system, the time evolution of c can be defined in this way

because ċ is a linear function of all of the other terms in the matrix. Additionally,

Eq. (A.21) can be written in matrix-vector form by grouping the two sets of indicies into

a single one each with no loss of generality.

Most operations appear as a matrix-matrix product on either side of the correlation

matrix, and these can easily be converted into left superoperators on the vectorized cvec

by

HL · c⇒ (IN ⊗HL) · cvec (A.22a)

c ·HR ⇒ (H†R ⊗ IN ) · cvec (A.22b)

HL · c ·HR ⇒ (H†R ⊗HL) · cvec, (A.22c)

2The focus is on correlation matricies in this section, but these results are generally true for any set
of matricies.
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where IN is the identity matrix of size N , the number of sites. Notice that the superop-

erator is now an N4 by N4 size matrix. The same approach to vectorizing also applies

to operations on the full density matrix, ρ, in order to reduce the time evolution of the

system to a set of linear operators.

For the open system case, the equation of motion has an additional term of the form

ċij =
∑

kl

Ωijklckl + Fij , (A.23)

which is a constant term which does not depend on any of the terms of c. In the steady

state solution, ċij = 0, the term, F , becomes the right hand side of the expression and Ω

is inverted to solve for cij . However, the full dynamics or properties of the time evolution

are often required, so it is useful to include F into the linearization of the differential

equation.

The solution to this is to expand cvec to include an additional term which is always 1.

Therefore, the equation of motion can be rewritten as


ċvec

1


 =


Ω F

0 0


 ·


cvec

1


 , (A.24)

and the equation is fully linear and the usual analysis can be applied to it (F and

Ω in this expression are their vectorized forms so that the operator is a 2D matrix).

Moreover, since the last term is always equal to 1, this provides a convenient way to

normalize solutions that would otherwise require another constraint—for example, find-

ing the eigenvectors of the linear operator to locate the states that do not decay.

A.5.2 Correlation Matrix to Density Matrix Conversion

Often it is useful to convert from the reduced representation correlation matrix back

into the full density matrix form. For example, different measures of the entanglement

entropy or discord require this form. Since the correlation matrix is a collection of
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expectation values, then we can easily write the density matrix as [176]

ρ =
∏

k

〈
b†kbk

〉
b†kbk +

〈
bkb
†
k

〉
bkb
†
k, (A.25)

where bk is associated with the diagonal basis of the block of lattice sites, and can be

written in terms of ci, the site basis. This site basis is expressed using the Jordan-Wigner

transformation as described in Sec. A.1. The reverse process is simpler: calculate the

needed expectation values using the density matrix,

cij(t) = tr
[
ρ(t)c†icj

]
. (A.26)

However, information about the density matrix will be lost using this conversion in the

general case. Combining this method with the similarity measurement in Sec. A.4 yields

a useful matrix for how correlated the state of the system is and how closely it can be

represented using the mean field methods.

A.6 Examples

This section contains a few examples of the types of derivations used within the main

text. For the most part, any arbitrary system is treated the same way: a Hamiltonian

or energy distribution is defined first, which leads to the creation of the expressions for

the reservoirs or Green’s functions. In numerical cases, these expressions can often be

evaluated directly from the initial expressions.

A.6.1 Born-Markov Approximation

If we have an explicit definition of the system Hamiltonian, we can derive the Lindblad

terms in Eq. (2.22) by assuming a site is connected to two implicit reservoirs, one full

and one empty, each with a Hamiltonian given by HB =
∑

k ωka
†
kak, and a connection to

the implicit reservoir as an operator B† =
∑

k gka
†
k and R so that the coupling between
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the two is HBR = R†B+B†R. In this example, R is a single site operator ci with onsite

energy εi so that R(t) = Re−ıεit in the interaction picture with i ∈ L,R. Following [177],

to create the Lindblad operators, we must find the time dependent partial trace of the

B terms:

F (t) =

∫ t

0
dt′ trB

[
B(t)B†(t′)ρBe

ıεi(t−t′)
]

(A.27)

and

G(t) =

∫ t

0
dt′ trB

[
B†(t′)B(t)ρBe

ıεi(t−t′)
]
. (A.28)

We assume that the bath is in thermal equilibrium with no correlations between the

modes
〈
a†kak′

〉
= δk,k′ for the full reservoir and

〈
a†kak′

〉
= 0 for the empty. In the

interaction picture this means that we can express the expectation values as

F (t) =

∫ ∞

−∞
dω Jf (ω)

∫ t

0
dt′e−ı(ω−εi)(t−t

′) (A.29)

and

G(t) =

∫ ∞

−∞
dω Je(ω)

∫ t

0
dt′e−ı(ω−εi)(t−t

′), (A.30)

with Jf and Je being the spectral functions of the full and empty implicit reservoirs

respectively. In the discrete case, it is described with

J(ω) =
∑

k

|g2
k|δ(ω − ωk) (A.31)

before being taken into the continuum limit. Still working in the interaction picture,

the time evolution of the reservoir density matrix ρR can be expressed in terms of the

F and G functions via

d

dt
ρR(t) =−G∗(t)

[
RR†ρR(t)−R†ρR(t)R

]
− F ∗(t)

[
ρR(t)R†R−RρR(t)R†

]

− F (t)
[
R†RρR(t)−RρR(t)R†

]
−G(t)

[
ρS(t)RR† −R†ρR(t)R

]
, (A.32)
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In the Markov approximation, the limit in the integral for F and G is taken to be t→∞,

meaning that the oscillating term goes to

∫ ∞

0
dτe−ı(ω−εi)τ = πδ(ω − εi)− ıP

1

ω − εi
, (A.33)

with the P implying a principal value integral in the expression for F and G:

F (t) = πJf (εi)− ıP
∫ ∞

−∞
dω

Jf (ω)

ω − εi
(A.34)

and similarly for G(t), which are then substituted into Eq. (A.32). In this manner, we

can derive the open version of a system coupled to a particular reservoir configuration

simply by reevaluating the expression involving the spectral functions. In addition, it is

possible to work in a reverse fashion by starting with a desired open reservoir distribution

and finding a discretization of the modes yields the desired time evolution, or, if one is

not possible, find one that matches in the correct regime.

A.6.2 Non-interacting Green’s Functions

As a quick check on the non-equilibrium theory that we have established in Sec. 2.3.3,

we want to ensure we recover the same dynamics as in the Landauer formalism. For this

we will use a Hamiltonian of the form

H =
∑

α;k∈L,R
εkαc

†
kαckα +

∑

α

εαc
†
αcα +

∑

α;k∈L,R
(Vkαc

†
kαcα + H.c.), (A.35)

where we have a band of energies on either side connected to a central non-interacting

site. We can define a level-width function for the two leads as

ΓL(R)α(ω) = 2π
∑

k∈L(R)

|Vkα|2δ(ω − εkα). (A.36)

If we calculate the current using the change in occupation of the left side lead and the

equations of motion for the Green’s functions, we find the following simple expression
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(details of the derivation as found in Ref. [58]):

I =
e

~

∫
dε

2π
T (ε)[fL(ε)− fR(ε)]. (A.37)

fL and fR are the occupation functions of the left side and right side leads where T (ε)

is a transmission probability at a given energy. This expression for the current is the

exact same one as we have found in the Landauer formalism; however, we have not built

any assumptions into our model beyond describing the Hamiltonian. Furthermore, the

transmission coefficient is given by

T (ε) = Tr {ΓL(ε)Gr(ε)ΓR(ε)Ga(ε)} . (A.38)

In the case of simple bands, the level-width function just becomes a constant over a

specified range and bounds the limits of integration in the expression for the current.
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Appendix B: Computational and Practical Considerations

This appendix serves to provide implementation-specific details about how the numerical

results in this thesis were calculated and is a reference for specific programming languages

and software that I’ve used over the course of my PhD. In general, I’ve prioritized open-

source and portable solutions over those provided by proprietary software.

B.1 Scientific Computing and Python

Python is an open-source, high-level, interpreted programming language, and was used

for nearly all the calculations presented in this thesis. Except on rare occasions, the

“hot spots” in the code path—the parts that used the heaviest numerical processing—

were able to be delegated to optimized libraries, which were often coded in a lower-level

language. This means that the overhead associated with an interpreted language (the

cost associated with transpiling the code into processor instructions at runtime) usually

does not affect the efficiency of the computation. Moreover, advantages are gained in

user time: no compile-time waiting, easier debugging and interactive sessions, and the

ability to use the same language for calculation, data processing, and plotting. Because

Python emphasizes readability and simplicity, oftentimes written programs are much

shorter and simpler than their low-level equivalents.
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Python is installed by default in most Linux distributions, and compiling a user-local

version from source is relatively simple as well. For Windows machines, the Anaconda

distribution includes the scientific libraries mentioned here, although others exist as well.

Python also allows packages to be installed locally within a shared system.

However, it should be noted that some modules beyond the core Python libraries are

necessary for efficient computation. The following sections describe the main extensions

used for the work in this thesis.

B.1.1 NumPy

NumPy is an extension to Python which provides support for pure, memory contiguous

arrays and high-level operations on them. In base Python, numbers are represented

as objects and are stored in variable-length lists, which add a non-negligible amount of

overhead to performing numerical calculations. In addition, many established algorithms

operate on a raw memory structure, so having access to it is necessary for backwards

compatibility. Any operation that can be expressed on matricies and arrays runs at

approximately the same speed as equivalent C code. Since the math used in this thesis

is almost entirely matrix operations over various structures, the efficiency provided by

NumPy is put to full use. The standard method of importation is through the command

import numpy as np .

An advantage of NumPy and the abstract representation of matricies is that the back

end is decoupled from the implementation, meaning that it can be compiled to take

advantage of hardware optimizations for the particular architecture that is used for

computation. The BLAS (basic linear algebra subprograms) provide optimized imple-

mentations of vector addition, matrix multiplication, etc., which are incorporated into

operations within NumPy.
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For instance, Intel provides an optimized implementation of BLAS in its math kernel

library (MKL). This implementation takes advantage of Intel-specific processor archi-

tecture enhancements to optimize for maximum throughput of numerical processing.

Different generations of processors have improvements on the x86 core architecture,

which are then incorporated into the implementation. Newer processors have improve-

ments to single instructions which act on multiple values at a time, like providing a dot

product over a section of a vector rather than having to perform each multiplication and

addition individually per instruction cycle. In addition, the operations used within the

BLAS can be parallelized to act over multiple cores or machines without changing any

of the higher-level interfaces.

What this means is that the correct memory structure for numerical computation can

be made through the array creation commands or by converting though np.array .

Then, the data can be operated on using, for example, np.transpose for transposi-

tion, np.dot for vector and matrix products,1 or eigensystems calculations or matrix

solving through np.linalg . These commands remain invariant of the underlying linear

algebra implementation. NumPy also provides universal functions, such as np.sin and

np.sqrt , and some data processing tools, such as loading a text file into a numerical

array, along with some statistical tools like np.average and np.stddev .

NumPy is available in most package managers, although if the optimized linear algebra is

desired, then it will likely need to be compiled from source. Usually, this involves setting

the correct default compiler in the environment variables and modifying the site.cfg

file to include the desired libraries.

B.1.2 SciPy

SciPy is a Python library that uses the methods exposed in NumPy for tasks that are

common in scientific computing, while the scope of NumPy itself is generally limited

1Or the new matrix multiplication operator @ if the version is new enough.
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to pure numerical operations. Often, these methods are written in a low-level language

(such as C or Fortran) and operate on the memory structure provided by NumPy.

The most common use of SciPy for this work is through solving differential equations and

numerical integration. It includes a generic interface class scipy.integrate.ode that

can be set to a number of integrator implementations, such as “VODE” or “LSODA,”

which are more common numerical integration libraries each with their own advantages

and disadvantages. The types of differential equations used in this thesis—usually in

conjuction with an equation of motion—vary with respect to their numerical stability,

so the ability to change integration methods and tune solver parameters is useful for

correctly solving these problems.

Computation of a definite integral is provided by scipy.integrate.quad for one di-

mensional integrations and scipy.integrate.nquad for integration over multiple val-

ues. Once again they are coupled to low-level implementations and can be tuned for a

given problem. Typically, the numerical integration is used in finding solutions within

the Green’s function formalism and, for the most part, sharply peaked functions or

infinite limits are readily handled by the built-in functions.

SciPy provides a sparse matrix implementation in scipy.sparse , which is able to

efficiently store and perform computations on large matricies in which most of the el-

ements are zero. This happens often when working with many-body systems without

approximations. The operators themselves—when constructed using a Jordan-Wigner

transformation (see Sec. A.1)—are sparse, and typically the Hamiltonian is a summa-

tion of a relatively low number of them. Using a sparse matrix saves space in most

of these cases, but often a dense matrix is required for other components such as the

time evolution operator or the density matrix after a finite time has passed. Calculating

a specific eigenvalue directly from a sparse matrix is difficult as well, as the condition

number of the matrix is usually large. However, there are some cases, particularly when

the system naturally separates into smaller subsystems, where it is useful to use the
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exact form of the operators. SciPy offers many different internal memory structures for

the sparse matrix, which can be tuned for a given problem as well.

scipy.interpolate contains interpolation facilities for multidimensional data and is

a convenient way to create a function from fixed data points. The methods range from

a simple linear interpolation to a higher-order spline fitting. It usually provides a more

accurate derivative or integral estimation for a limited number of data points. When

visualizing data, like on a surface plot, it sometimes becomes important to have a strict

control over the precise interpolation, rather than relying on the plotting software.

A large number of signal processing algorithms and discrete Fourier transforms are

available under scipy.signal and scipy.fftpack respectively. While these tools

are typically used for applications in processing measurements from sensors outside the

computer, it is often the case that a particular calculation is too long or difficult to

run with a high resolution. Expensive computations often have a level of discreteness

associated with them, and it becomes useful to treat the output as the result of an

experiment. In some cases, even if the calculation can be run to a perfect resolution and

high accuracy, there may be some components of the model that need to be filtered or

otherwise processed.

Lastly, SciPy provides optimization and root finding methods through scipy.optimize .

The non-linear curve fitting (under scipy.optimize.curve fit ) is particularly useful,

as it computes the least squares fit of data to an arbitrary function. Much of the work in

this thesis involves creating an analytic model (which may be a simplified system or an

ansatz involving the parameters) and verifying its effectiveness to describe the complex

system. A most useful operation is to use a simulation as the input function to the

output of a long calculation, both of which might be numerically intractable.

Since SciPy relies on the core facilities exposed by NumPy for numerical processing,

then SciPy can simply be installed from a package manager or from source after NumPy

and should share the same level of computational efficiency.
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B.1.3 Cython

In the rare cases where a computation is desired that does not exist in an optimized

library and cannot easily be expressed as a vector or matrix operation, then Cython

can be used to compile a module into an efficient form. Cython is an extension to the

Python language that allows declaration of static types and interfacing with C routines.

By manually specifying types of variables and parameters with the cdef command,

the compiler is able to remove much of the overhead associated with an interpreted

language, such as having to deal with object management or extra time used on control

structures. Moreover, the resulting output is in machine language, which means that

the processing power is used exclusively outside of the Python virtual machine.

Cython modules have a separate extension and must be compiled separately, but once

they are compiled, the usual Python programs can import them just like any other

module. The generated C code can be analyzed by the cython -a command, which

shows how each line of the Cython module corresponds to the C version. This makes

it easy to identify inefficient locations where more code is inadvertently added—such as

the accidental inclusion of a number as a Python object rather than a numeric datatype.

Structures like for loops are able to be reduced to a compact C form if the correct

type hinting is given. The final compilation to machine code is handled by the system

C compiler, and could potentially optimize it much further.

A useful application for a strongly compiled module is for the kernel of a numerical

integration or a differential equation solver. When combined with the SciPy routines,

much of the overhead of passing parameters and shifting between contexts is reduced.

Cython also works well with the NumPy module, as most of the accesses and assignments

in a NumPy array can be reduced to a low number of C statements.
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B.1.4 Profiling and Testing

Several tools are available for determining an execution profile of Python code—that

is, for finding which parts of the program take the longest. For a simple benchmarking

of small components, the core library provides the timeit module to measure the

total execution time. For a function-level breakdown, cProfile is a C extension, also

included with the core library, which tracks the total number of function calls, as well

as the time spent within each function. Often in numerical programming, even single

lines can have a large effect on the performance (such as performing operations on very

large arrays), so it is useful to profile down to a line-by-line level. The line profiler

package, which must be installed separately, can be given a Python function and will

time the execution of each individual line within that function.

In simulation, it is sometimes necessary to compare two different models to determine

if they match each other under certain conditions. For instance, one might decide to

build a simple version of a more complicated, inefficient model or implement a different

version that should be identical in theory. Comparing the results by hand—to ensure

that any changes have not inadvertently upset past work—becomes very tedious. My

preferred method of handling tests is through the nose framework, although there are

many options available. NumPy includes np.isclose and related testing functions for

easy access to numerical comparisons within certain error tolerances.

Although nose is a unit testing framework, it is useful for creating the full range of

tests needed for numerical work. In this work, I divide the testing into multiple levels of

scope: implementation (does a numerical function return the expected outputs or is the

program representing data correctly), analytic (does a function obey correct symmetries

or limits; do two analytic forms match numerically), modeling (does the simulation

reproduce the correct results for a smaller system that can be solved in a different

way; do two types of simulation match), physical (is energy conserved; are convergence

criteria met), and conjecture (does the solution match intuition about the problem).

Writing the tests in this manner for a complete problem allows the increase in the level
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of complexity of the simulations while minimizing the effect of new errors or regressions.

In addition, the tests themselves can be used to determine the simulation execution,

such as automatically rerunning sections that fail non-deterministically or by adjusting

parameters based on the level of convergence.

Lastly, many tests in numerical programming end up looking quite similar. For example,

a function that takes a numeric input is run with a variety of different inputs and

something is asserted about the result. However, what we usually want is an assertion

over the whole domain of numbers—some property that holds regardless of the input—

and check it against some data matching a specification. This is known as property based

testing and is provided by the Python library hypothesis . It works by generating

random data that matches a specification (such as three floats for a particular function)

and using those inputs as the basis for testing. If a falsifying example is found, the test

case is automatically reduced to the simplest possible counterexample that reproduces

the error.

B.2 Other Scientific Computing Libraries

Although the bulk of the numerical simulations performed for thesis work was done in

Python, there were still a few situations where a suitable module did not exist.

ITensor is a C++ library for implementing matrix product operators and performing

DMRG and tDMRG calculations, developed by E. Miles Stoudenmire and Steven R.

White. It uses the tensor as the base data structure and allows for the transcription of

tensor networks into efficient code, as well as manages the contractions and factorization

for matching indices.

In the case of very large matrix operations (size on the order of a million by a million), it

becomes necessary to spread the computation over multiple machines. For this case, the

ScaLAPACK library is required. ScaLAPACK is an implementation of linear algebra

routines that are designed for parallel machines, and a version exists within the MKL.
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The routines use a parallel form of BLAS known as PBLAS, which in turn depend on

the MPI (message passing interface) for communication. The library itself is written in

Fortran, and can be used through a compiled C program. There has been some work in

implementing a wrapper for Python, however, it is still in the early stages at the time

of writing.

In both of these cases, the expensive numerical computations are already compiled into

efficient cores, so writing or extending a higher-level wrappers for these tools remains a

possibility for future work.

B.3 Analytic Work

While numerical tools continue to grow in usability and sophistication, the state of

computer algebra systems is relatively undeveloped in comparison. Naturally, this is to

be somewhat expected, as programming general purpose algebraic tools is much more of

a challenge. For this work, I’ve primarily used Mathematica for when a difficult analytic

calculation is needed. In many cases, a given computation would need to be tuned to

execute in a reasonable time or might turn out to be outright impossible. Whether or

not this sort of work will be easier in the future or will always remain computationally

difficult remains to be seen.

B.4 Computational Complexity

In the main text, the efficiency and space requirements were generally mentioned in

abstract terms. In this section, we briefly discuss some of the real limits associated with

these types of simulations.

Often, these types of calculations are CPU bound rather than memory bound. Even

though something like a wavefunction can take up a large amount of space, typically only

a few copies are required at any one time. In time evolution, we are often only interested
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in a the dynamics of a few observables (such as the electronic current or density), so

the intermediate terms can be discarded as the simulation progresses. Even if an entire

intermediate state needs to be saved, that still only requires a relatively small amount

of space—for instance, a full 32-site wavefunction might only be 100 MB in the MPS

method.

For mean-field calculations, systems sizes of 1,000 to 10,000 sites are readily calculated

on a single machine, with a processing time on the order of a few hours for 100 time units

(the inverse of the hopping frequency). This scales as tN2, so even systems with around

1,000,000 sites can be done in an appropriate cluster,2 and more processing power can

be added for larger systems or for running to longer times. In the case of interacting

systems, finding a solution becomes very difficult without any approximations. A single

machine can realistically expect to do a simulation with 6-8 sites, and because of the

extremely poor scaling, 20 sites is probably the upper bound that a full cluster could

compute exactly.

When using matrix product states, for the time evolution that we discussed here, an

energy cutoff of 10−9 is sufficient for a converged solution and the matrix product di-

mension limit is set at 5,000, although in practice it never reaches that limit. Even

if it had, the whole state would be around 20 GB, which can easily be kept in main

memory during the calculation. For simulations out to recurrence, t = 16, for a 32 site

system—as used in Chapter 3—with a timestep of 0.01, the simulation time was on the

order of 3-8 hours on a single machine per simulation.

In tDMRG, since each site is associated with its own tensor and only information from

the neighboring sites is needed for each timestep, the algorithm could potentially paral-

lelize extremely well, meaning that systems up to size 3,000 could potentially be simu-

lated within the same time on a cluster. The work to expand this algorithm remains to

be done.

2For reference, a cluster as we refer to it here is 1,000 to 10,000 processor cores.
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